Anatomical liver resection with the Glissonean pedicle isolation is widely approved as an essential procedure for safety and curability. Especially, the extrahepatic Glissonean pedicle isolation without parenchymal destruction should be an ideal procedure. However, the surgical technique has not been standardized due to a lack of anatomical understanding. Herein, we proposed a novel comprehensive surgical anatomy of the liver based on Laennec's capsule that would give a theoretical background to the extrahepatic Glissonean pedicle isolation. Laennec's capsule is the proper membrane that covers not only the entire surface of the liver including the bare area but also the intrahepatic parenchyma surrounding the Glissonean pedicles. Consequently, there exists a gap between the Glissonean pedicle and Laennec's capsule that could be reached extrahepatically and allows us to isolate the extrahepatic Glissonean pedicle without parenchymal destruction systematically. For standardization, it is essential to approach the “six gates” indicated by the “four anatomical landmarks”: the Arantius plate, the umbilical plate, the cystic plate and the Glissonean pedicle of the caudate process (G1c). This novel anatomy would contribute to standardize the surgical techniques of the systematic extrahepatic Glissonean pedicle isolation for anatomical liver resection including laparoscopic or robotic liver resection and to bring innovative changes in hepatobiliary surgery for spreading safe and curable liver resection.
Heme oxygenase (HO)-1 preconditioning through genetic or pharmacologic interventions was shown experimentally to improve posttransplant outcome of liver grafts. However, its clinical application requires careful consideration because of the complexity and economic costs of the procedures. This study aimed to examine if graft preconditioning with HO-1 could be substituted by a simple treatment with heme-degrading products such as bilirubin. Rats were pretreated with or without hemin, an HO-1 inducer for preconditioning. Their livers were harvested as grafts in University of Wisconsin (UW) solution for 16 hours at 4°C and followed by reperfusion ex vivo or by transplantation in vivo. The control grafts were also treated with a rinse buffer containing varied concentrations of unconjugated bilirubin with different time intervals. The HO-1-preconditioned grafts ex vivo exhibited a marked improvement of bile output and cell injury that was cancelled by blocking HO with zinc protoporphyrin-IX. The aggravation of the graft viability by the inhibitor was repressed by supplementation of bilirubin but not by that of carbon monoxide. Furthermore, a short-term rinse treatment with micromolar levels of bilirubin attenuated biliary dysfunction and cell injury of the grafts both ex vivo and in vivo even without HO-1 preconditioning. The protective effects of HO-1 preconditioning or bilirubin rinse appeared to involve its inhibitory effects on lipid peroxidation in hepatocytes. In conclusion, these results suggest that bilirubin rinse serves as a simple strategy to ameliorate hyperacute oxidative stress and hepatobiliary dysfunction of the transplanted grafts, mimicking effects of HO-1-mediated preconditioning.
for the International Robotic and Laparoscopic Liver Resection study group investigators IMPORTANCE Laparoscopic and robotic techniques have both been well adopted as safe options in selected patients undergoing hepatectomy. However, it is unknown whether either approach is superior, especially for major hepatectomy such as right hepatectomy or extended right hepatectomy (RH/ERH). OBJECTIVETo compare the outcomes of robotic vs laparoscopic RH/ERH. DESIGN, SETTING, AND PARTICIPANTS In this case-control study, propensity score matching analysis was performed to minimize selection bias. Patients undergoing robotic or laparoscopic RH/EHR at 29 international centers from 2008 to 2020 were included. INTERVENTIONS Robotic vs laparoscopic RH/ERH. MAIN OUTCOMES AND MEASURES Data on patient demographics, tumor characteristics, and short-term perioperative outcomes were collected and analyzed. RESULTS Of 989 individuals who met study criteria, 220 underwent robotic and 769 underwent laparoscopic surgery. The median (IQR) age in the robotic RH/ERH group was 61.00 (51.86-69.00) years and in the laparoscopic RH/ERH group was 62.00 (52.03-70.00) years. Propensity score matching resulted in 220 matched pairs for further analysis. Patients' demographics and tumor characteristics were comparable in the matched cohorts. Robotic RH/ERH was associated with a lower open conversion rate (19 of 220 [8.6%] vs 39 of 220 [17.1%]; P = .01) and a shorter postoperative hospital stay (median [IQR], 7.
Background The Brisbane 2000 Terminology for Liver Anatomy and Resections, based on Couinaud’s segments, did not address how to identify segmental borders and anatomic territories of less than one segment. Smaller anatomic resections including segmentectomies and subsegmentectomies, have not been well defined. The advent of minimally invasive liver resection has enhanced the possibilities of more precise resection due to a magnified view and reduced bleeding, and minimally invasive anatomic liver resection (MIALR) is becoming popular gradually. Therefore, there is a need for updating the Brisbane 2000 system, including anatomic segmentectomy or less. An online "Expert Consensus Meeting: Precision Anatomy for Minimally Invasive HBP Surgery (PAM‐HBP Surgery Consensus)" was hosted on February 23, 2021. Methods The Steering Committee invited 34 international experts from around the world. The Expert Committee (EC) selected 12 questions and two future research topics in the terminology session. The EC created seven tentative definitions and five recommendations based on the experts’ opinions and the literature review performed by the Research Committee. Two Delphi Rounds finalized those definitions and recommendations. Results This paper presents seven definitions and five recommendations regarding anatomic segmentectomy or less. In addition, two future research topics are discussed. Conclusions The PAM‐HBP Surgery Consensus has presented the Tokyo 2020 Terminology for Liver Anatomy and Resections. The terminology has added definitions of liver anatomy and resections that were not defined in the Brisbane 2000 system.
The purpose of this study was to examine distribution and time history of oxidative stress during the hyperacute period of reperfusion in the liver grafts undergoing cold ischemia and to investigate roles of Kupffer cells as a potential oxidant source. Rat livers were harvested at 4ЊC in University of Wisconsin solution and followed by reperfusion with Krebs-Henseleit buffer under monitoring bile excretion. To investigate oxidative changes, laser-confocal microfluorography was performed in reperfused livers preloaded with dichlorodihydrofluorescein diacetate succinimidyl ester, a fluorescence precursor sensing intracellular hydroperoxide generation. Livers undergoing the 16-hour cold storage displayed an impaired recovery of bile aciddependent bile output concurrent with a marked increase in hydroperoxide generation in hepatocytes, which occurred as early as 5 minutes after the onset of reperfusion, whereas the status of lobular perfusion was well maintained. Pretreatment with liposome-encapsulated dichloromethylene diphosphonate, a Kupffer cell-depleting reagent, did neither alter the reperfusion-induced periportal oxidative changes nor improve the recovery of bile output in the graft. On the other hand, EPCK, a hepatotropic antioxidant composed of vitamin E phosphate ester bound to vitamin C, not only diminished the oxidative changes but also improved the reduction of bile acid-dependent bile output. Furthermore, the reagent was capable of inhibiting H 2 O 2 -induced oxidative stress in cultured hepatocytes. These results suggest that hepatocytes constitute a major site of the oxidative insult triggered through Kupffer cell-independent mechanisms and serve as an important cellular component to be protected by antioxidant therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.