IntroductionDespite a decade of research into virtual stent deployment and the post-stenting aneurysmal hemodynamics, the hemodynamic factors which correlate with successful treatment remain inconclusive. We aimed to examine the differences in various post-treatment hemodynamic parameters between successfully and unsuccessfully treated cases, and to quantify the additional flow diversion achievable through stent compaction or insertion of a second stent.MethodsA systematic review and meta-analysis were performed on eligible studies published from 2000 to 2019. We first classified cases according to treatment success (aneurysm occlusion) and then calculated the pooled standardized mean differences (SMD) of each available parameter to examine their association with clinical outcomes. Any additional flow diversion arising from the two common strategies for improving the stent wire density was quantified by pooling the results of such studies.ResultsWe found that differences in the aneurysmal inflow rate (SMD −6.05, 95% CI −10.87 to −1.23, p=0.01) and energy loss (SMD −5.28, 95% CI −7.09 to −3.46, p<0.001) between the successfully and unsuccessfully treated groups were indicative of statistical significance, in contrast to wall shear stress (p=0.37), intra-aneurysmal average velocity (p=0.09), vortex core-line length (p=0.46), and shear rate (p=0.09). Compacting a single stent could achieve additional flow diversion comparable to that by dual-stent implantation.ConclusionsInflow rate and energy loss have shown promise as identifiers to discriminate between successful and unsuccessful treatment, pending future research into their diagnostic performance to establish optimal cut-off values.
Computational fluid dynamics is widely used to simulate droplet-spreading behavior due to respiratory events. However, droplet generation inside the body, such as the number, mass, and particle size distribution, has not been quantitatively analyzed. The aim of this study was to identify quantitative characteristics of droplet generation during coughing. Airflow simulations were performed by coupling the discrete phase model and Eulerian wall film model to reproduce shear-induced stripping of airway mucosa. An ideal airway model with symmetric bifurcations was constructed, and the wall domain was covered by a mucous liquid film. The results of the transient airflow simulation indicated that the droplets had a wide particle size distribution of 0.1–400 µm, and smaller droplets were generated in larger numbers. In addition, the total mass and number of droplets generated increased with an increasing airflow. The total mass of the droplets also increased with an increasing mucous viscosity, and the largest number and size of droplets were obtained at a viscosity of 8 mPa s. The simulation methods used in this study can be used to quantify the particle size distribution and maximum particle diameter under various conditions.
As an approach to maintain patency in femoropopliteal stenting, a helical stent configuration was proposed, which showed improved patency in clinical trials. However, the effects of helical stent placement on the flow have not been quantitatively analyzed. The purpose of this study was to estimate flow velocities to quantify the influence of helical stent placement. Helical and straight stents were implanted in three healthy pigs, and the flow velocities were estimated using the time-intensity curve (TIC) in the angiography images. The angiographic images indicated thinning of the leading edge of the contrast medium through the helically deformed artery, which was not observed in the straight stent. The slower rise of the TIC peak in the helical stent indicated faster travel of this thinner edge. Arterial expansion due to stenting was observed in all cases, and the expansion rate varied according to location. All cases of helical stent implantation showed that velocity was maintained (55.0%–71.3% velocity retention), unlike for straight stent implantation (43.0%–68.0% velocity retention); however, no significant difference was observed.
Computational fluid dynamics is widely used to simulate droplet-spreading behavior due to respiratory events. However, droplet generation inside the body, such as the number, mass, and particle size distribution, has not been quantitatively analyzed. The aim of this study was to identify quantitative characteristics of droplet generation during coughing. Airflow simulations were performed by coupling the discrete phase model and Eulerian wall film model to reproduce shear-induced stripping of airway mucosa. An ideal airway model with symmetric bifurcations was constructed, and the wall domain was covered by a mucous liquid film. The results of the transient airflow simulation indicated that the droplets had a wide particle size distribution of 0.1–400 µm, and smaller droplets were generated in larger numbers. In addition, the total mass and number of droplets generated increased with an increasing airflow. The total mass of the droplets also increased with an increasing mucous viscosity, and the largest number and size of droplets were obtained at a viscosity of 8 mPa·s. The simulation methods used in this study can be used to quantify the particle size distribution and maximum particle diameter under various conditions.
Stent treatment can be used to treat blood vessel stenosis in a less invasive manner, but re-stenosis is a concern. Because a helical-stent configuration has been thought to reduce the amount of intimal hyperplasia, the helical stent is considered clinically effective. The effects of the helical stent on blood flow velocity, however, have not been studied. In this study, we estimated flow velocities before and after helical stenting using time-intensity-curve (TIC) from angiography images and compared them with straight stenting velocities. As a result, in all cases (N = 3), the velocity reduction was less with helical stenting than with straight stenting. Based on angiography images, this flow estimation method can estimate patient-specific blood flow velocity in situ even in a presence of a stent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.