We consider a stochastic variant of the packing-type integer linear programming problem, which contains random variables in the objective vector. We are allowed to reveal each entry of the objective vector by conducting a query, and the task is to find a good solution by conducting a small number of queries. We propose a general framework of adaptive and non-adaptive algorithms for this problem, and provide a unified methodology for analyzing the performance of those algorithms. We also demonstrate our framework by applying it to a variety of stochastic combinatorial optimization problems such as matching, matroid, and stable set problems.
A recent trend in the design of FPT algorithms is exploiting the half-integrality of LP relaxations. In other words, starting with a half-integral optimal solution to an LP relaxation, we assign integral values to variables one-by-one by branch and bound. This technique is general and the resulting time complexity has a low dependency on the parameter. However, the time complexity often becomes a large polynomial in the input size because we need to compute half-integral optimal LP solutions.In this paper, we address this issue by providing an O(km)-time algorithm for solving the LPs arising from various FPT problems, where k is the optimal value and m is the number of edges/constraints. Our algorithm is based on interesting connections among 0/1/all constraints, which has been studied in the field of constraints satisfaction, A-path packing, which has been studied in the field of combinatorial optimization, and the LPs used in FPT algorithms. With the aid of this algorithm, we obtain improved FPT algorithms for various problems, including Group Feedback Vertex Set, Subset Feedback Vertex Set, Node Multiway Cut, Node Unique Label Cover, and Non-monochromatic Cycle Transversal. The obtained running time for each of these problems is linear in the input size and has the current smallest dependency on the parameter. In particular, these algorithms are the first linear-time FPT algorithms for problems including Group Feedback Vertex Set and Nonmonochromatic Cycle Transversal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.