With the increase of zinc resource consumption, the recovery and utilization of zinc resources in zinc suboxide has become one of the current research hotspots. In this study, the electrochemical method was used to remove the impurities in the zinc leaching night and enrich the zinc ferrite in the ammonia leaching residue for the solution and ammonia leaching slag after the ammonia leaching of zinc hypoxide, in order to realize the comprehensive utilization of the essence of zinc immersion night and new resources. The results showed that the reduction potentials of copper, lead, cadmium, and zinc in the ammonia leaching solution were analyzed by electrochemical testing methods to be −0.76 V, −0.82 V, −0.94 V, and −1.3 V, respectively. Through constant potential electrodeposition, the removal rate of copper, lead, cadmium. The removal rate of cadmium is 98.73%, and the removal rate of lead and copper is more than 99%. The purified ammonia leaching solution is evaporated at 90 °C for 25 min to obtain basic zinc carbonate. The purity of ZnO obtained after calcination at 500 °C for 120 min is 96.31%. The ammonia leaching residue was pickled with 3 mol·L−1 acetic acid for 30 min to effectively remove PbCO3, and then magnetic separation was carried out with a current intensity of 1.4 A. The final zinc ferrite content was 83.83%.
With the widespread use of lithium-ion batteries, the cumulative amount of used lithium-ion batteries is also increasing year by year. Since waste lithium-ion batteries contain a large amount of valuable metals, the recovery of valuable metals has become one of the current research hotspots. The research uses electrometallurgical technology, and the main methods used are cyclic voltammetry, square wave voltammetry, chronoamperometry and open circuit potential. The electrochemical reduction behavior of Ni3+ in NaCl-CaCl2 molten salt was studied, and the electrochemical reduction behavior was further verified by using a Mo cavity electrode. It is determined that the reduction process of Ni3+ in LiNiO2 is mainly divided into two steps: LiNiO2 → NiO → Ni. Through the analysis of electrolysis products under different conditions, when the current value of LiNiO2 is not less than 0.03 A, the electrolysis product after 10 h is metallic Ni. When the current reaches 0.07 A, the current efficiency is 77.9%, while the Li+ in LiNiO2 is enriched in NaCl-CaCl2 molten salt. The method realizes the separation and extraction of the valuable metal Ni in the waste lithium-ion battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.