Bioprocess optimization is important in order to make the bioproduction process more efficient and economic. The conventional optimization methods are costly and less efficient. On the other hand, modeling and computer simulation can reveal the mechanisms behind the phenomenon to some extent, to assist the deep analysis and efficient optimization of bioprocesses. In this chapter, modeling and computer simulation of microbial growth and metabolism kinetics, bioreactor dynamics, bioreactor feedback control will be made to show the application methods and the usefulness of modeling and computer simulation methods in optimization of the bioprocess technology.
Background: Candida utilis is widely used in bioindustry, and its cell mass needs to be produced in a cost effective way. Process optimization based on the experimental results is the major way to reduce the production cost. However, this process is expensive, time consuming and labor intensive. Mathematical modeling is a useful tool for process analysis and optimization. Furthermore, sufficient information can be obtained with fewer experiments by using the mathematical modeling, and some results can be predicted even without doing experiments. Results: In the present study, we performed the mathematical modeling and simulation for the cell mass production of Candida utilis based on limited batch and repeated fedbatch experiments. The model parameters were optimized using genetic algorithm (GA), and the processes were analyzed. Conclusions: Taken together, this newly developed method is efficient, labor saving and cost effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.