Purpose: Despite the FDA approval of mTOR inhibitors (mTORi) for the treatment of renal cell carcinoma (RCC), the benefits are relatively modest and the few responders usually develop resistance. We investigated whether the resistance to mTORi is due to upregulation of PD-L1 and the underlying molecular mechanism.Experimental Design: The effects of transcription factor EB (TFEB) on RCC proliferation, apoptosis, and migration were evaluated. Correlation of TFEB with PD-L1 expression, as well as effects of mTOR inhibition on TFEB and PD-L1 expression, was assessed in human primary clear cell RCCs. The regulation of TFEB on PD-L1 was assessed by chromatin immunoprecipitation and luciferase reporter assay. The therapeutic efficacies of mTORi plus PD-L1 blockade were evaluated in a mouse model. The function of tumor-infiltrating CD8 þ T cells was analyzed by flow cytometry.Results: TFEB did not affect tumor cell proliferation, apoptosis, and migration. We found a positive correlation between TFEB and PD-L1 expression in RCC tumor tissues, primary tumor cells, and RCC cells. TFEB bound to PD-L1 promoter in RCCs and inhibition of mTOR led to enhanced TFEB nuclear translocation and PD-L1 expression. Simultaneous inhibition of mTOR and blockade of PD-L1 enhanced CD8 þ cytolytic function and tumor suppression in a xenografted mouse model of RCC.Conclusions: These data revealed that TFEB mediates resistance to mTOR inhibition via induction of PD-L1 in human primary RCC tumors, RCC cells, and murine xenograft model. Our data provide a strong rationale to target mTOR and PD-L1 jointly as a novel immunotherapeutic approach for RCC treatment.
The efficacy of checkpoint immunotherapy to non-small cell lung cancer (NSCLC) largely depends on the tumor microenvironment (TME). Here, we demonstrate that CCL7 facilitates anti-PD-1 therapy for the KrasLSL−G12D/+Tp53fl/fl (KP) and the KrasLSL−G12D/+Lkb1fl/fl (KL) NSCLC mouse models by recruiting conventional DC 1 (cDC1) into the TME to promote T cell expansion. CCL7 exhibits high expression in NSCLC tumor tissues and is positively correlated with the infiltration of cDC1 in the TME and the overall survival of NSCLC patients. CCL7 deficiency impairs the infiltration of cDC1 in the TME and the subsequent expansion of CD8+ and CD4+ T cells in bronchial draining lymph nodes and TME, thereby promoting tumor development in the KP mouse model. Administration of CCL7 into lungs alone or in combination with anti-PD-1 significantly inhibits tumor development and prolongs the survival of KP and KL mice. These findings suggest that CCL7 potentially serves as a biomarker and adjuvant for checkpoint immunotherapy of NSCLC.
BackgroundEarly invasion and metastasis are responsible for the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC), and epithelial-to-mesenchymal transition (EMT) is recognized as a crucial biological progress in driving tumor invasion and metastasis. The transcription factor FOXO3a is inactivated in various types of solid cancers and the loss of FOXO3a is associated with EMT and tumor metastasis. In this study, we sought to explore whether SPRY2, a regulator of receptor tyrosine kinase (RTK) signaling, is involved in FOXO3a-mediated EMT and metastasis in PDAC.MethodsImmunohistochemistry was performed in 130 paired PDAC tissues and paracarcinomatous pancreatic tissues. Cell proliferation and apoptosis were assessed by cell counting kit and flow cytometry, while cell migration and invasion were evaluated with wound healing and transwell assays. The changes in mRNA and protein levels were estimated by qRT-PCR and western blot. BALB/c nude mice xenograft model was established to evaluate tumorigenesis and metastasis in vivo.ResultsFOXO3a expression was remarkably reduced in PDAC tissues, and correlated with metastasis-associated clinicopathologic characteristics and poor prognosis in patients with PDAC. In addition to the promotion of proliferation and suppression of apoptosis, knockdown of FOXO3a or SPRY2 induced EMT and promoted the migration and invasion of PDAC cells via activation of the β-catenin/TCF4 pathway. Moreover, silencing of SPRY2 reversed the suppressor effects induced by FOXO3a overexpression on EMT-associated migration and invasion of PDAC cells, while blockade of β-catenin reversed the effects of SPRY2 loss. FOXO3a knockdown decreased SPRY2 protein stability, whereas SPRY2 knockdown enhanced β-catenin protein stability. In vivo, FOXO3a knockdown promoted the tumorigenic ability and metastasis of PDAC cells.ConclusionsOur study suggests that knockdown of FOXO3a induces EMT and promotes metastasis of PDAC by activation of the β-catenin/TCF4 pathway through SPRY2. Thus, FOXO3a may represent a candidate therapeutic target in PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.