Cross-lingual word embeddings have been gaining attention because they can capture the semantic meaning of words across languages, which can be applied to cross-lingual tasks. Most methods learn a single mapping (e.g., a linear mapping) to transform a word embedding space from one language to another. To improve bilingual word embeddings, we propose an advanced method that adds a language-specific mapping. We focus on learning Japanese-English bilingual word embedding mapping by considering the specificity of the Japanese language. We evaluated our method by comparing it with single mapping-based-models on bilingual lexicon induction between Japanese and English. We determined that our method was more effective, with significant improvements on words of Japanese origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.