Caenorhabditis elegans uses ascaroside pheromones to induce development of the stress-resistant dauer larval stage and to coordinate various behaviors. Peroxisomal β-oxidation cycles are required for the biosynthesis of the fatty acid-derived side chains of the ascarosides. Here we show that three acyl-CoA oxidases, which catalyze the first step in these β-oxidation cycles, form different protein homo-and heterodimers with distinct substrate preferences. Mutations in the acyl-CoA oxidase genes acox-1, -2, and -3 led to specific defects in ascaroside production. When the acyl-CoA oxidases were expressed alone or in pairs and purified, the resulting acyl-CoA oxidase homo-and heterodimers displayed different sidechain length preferences in an in vitro activity assay. Specifically, an ACOX-1 homodimer controls the production of ascarosides with side chains with nine or fewer carbons, an ACOX-1/ACOX-3 heterodimer controls the production of those with side chains with seven or fewer carbons, and an ACOX-2 homodimer controls the production of those with ω-side chains with less than five carbons. Our results support a biosynthetic model in which β-oxidation enzymes act directly on the CoA-thioesters of ascaroside biosynthetic precursors. Furthermore, we identify environmental conditions, including high temperature and low food availability, that induce the expression of acox-2 and/or acox-3 and lead to corresponding changes in ascaroside production. Thus, our work uncovers an important mechanism by which C. elegans increases the production of the most potent dauer pheromones, those with the shortest side chains, under specific environmental conditions. dauer | pheromone | ascaroside | beta-oxidation | acyl-CoA oxidase
Caenorhabditis elegans produces a complex mixture of ascaroside pheromones to control its development and behavior. Acyl-CoA oxidases, which participate in β-oxidation cycles that shorten the side chains of the ascarosides, regulate the mixture of pheromones produced. Here, we use CRISPR-Cas9 to make specific nonsense and missense mutations in acox genes and determine the effect of these mutations on ascaroside production in vivo. Ascaroside production in acox-1.1 deletion and nonsense strains, as well as a strain with a missense mutation in a catalytic residue, confirms the central importance of ACOX-1.1 in ascaroside biosynthesis and suggests that ACOX-1.1 functions in part by facilitating the activity of other acyl-CoA oxidases. Ascaroside production in an acox-1.1 strain with a missense mutation in an ATP-binding site at the ACOX-1.1 dimer interface suggests that ATP binding is important for the enzyme to function in ascaroside biosynthesis in vivo. Ascaroside production in strains with deletion, nonsense, and missense mutations in other acox genes demonstrates that ACOX-1.1 works with ACOX-1.3 in processing ascarosides with 7-carbon side chains, ACOX-1.4 in processing ascarosides with 9- and 11-carbon side chains, and ACOX-3 in processing ascarosides with 13- and 15-carbon side chains. It also shows that ACOX-1.2, but not ACOX-1.1, processes ascarosides with 5-carbon ω-side chains. By modeling the ACOX structures, we uncover characteristics of the enzyme active sites that govern substrate preferences. Our work demonstrates the role of specific acyl-CoA oxidases in controlling the length of ascaroside side chains and thus in determining the mixture of pheromones produced by C. elegans.
Caenorhabditis elegans produces ascaroside pheromones to control its development and behavior. Even minor structural differences in the ascarosides have dramatic consequences for their biological activities. Here, we identify a mechanism that enables C. elegans to dynamically tailor the fatty-acid side chains of the indole-3-carbonyl (IC)-modified ascarosides it has produced. In response to starvation, C. elegans uses the peroxisomal acyl-CoA synthetase ACS-7 to activate the side chains of medium-chain IC-ascarosides for β-oxidation involving the acyl-CoA oxidases ACOX-1.1 and ACOX-3. This pathway rapidly converts a favorable ascaroside pheromone that induces aggregation to an unfavorable one that induces the stress-resistant dauer larval stage. Thus, the pathway allows the worm to respond to changing environmental conditions and alter its chemical message without having to synthesize new ascarosides de novo. We establish a new model for biosynthesis of the IC-ascarosides in which side-chain β-oxidation is critical for controlling the type of IC-ascarosides produced.
In this study, we assessed the effect of symbiotic (cognate and noncognate) and non-symbiotic bacteria on ascaroside production of firstgeneration adults in two Steinernema spp.: S. carpocapsae All strain and S. feltiae SN strain. Each nematode species was reared under three bacterial scenarios: (1) cognate symbiotic, (2) non-cognate symbiotic strain and (3) non-cognate symbiotic species. Our results showed S. carpocapsae produced four quantifiable ascaroside molecules: asc-C5, asc-C6, asc-C7 and asc-C11, whereas in S. feltiae only three molecules were detected: asc-C5, asc-C7 and asc-C11. Bacterial conditions did not significantly affect the quantity of the secreted ascarosides in first-generation adults of S. carpocapsae. However, in S. feltiae, Xenorhabdus nematophila All strain influenced the production of two ascaroside molecules: asc-C5 and asc-C11.
Over the past two decades, we have seen an increase in the complexity and diversity of biotherapeutic modalities pursued by biopharmaceutical companies. These biologics are multifaceted and susceptible to post-translational modifications and in vivo biotransformation that could impose challenges for bioanalysis. It is vital to characterize the functionality, stability and biotransformation products of these molecules to enable screening, identify potential liabilities at an early stage and devise a bioanalytical strategy. This article highlights our perspective on characterization and bioanalysis of biologics using hybrid LC–MS in our global nonregulated bioanalytical laboratories. AbbVie's suite of versatile, stage-appropriate characterization assays and quantitative bioanalytical approaches are discussed, along with guidance on their utility in answering project-specific questions to aid in decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.