BackgroundRodents represent around 43% of all mammalian species, are widely distributed, and are the natural reservoirs of a diverse group of zoonotic viruses, including hantaviruses, Lassa viruses, and tick-borne encephalitis viruses. Thus, analyzing the viral diversity harbored by rodents could assist efforts to predict and reduce the risk of future emergence of zoonotic viral diseases.ResultsWe used next-generation sequencing metagenomic analysis to survey for a range of mammalian viral families in rodents and other small animals of the orders Rodentia, Lagomorpha, and Soricomorpha in China. We sampled 3,055 small animals from 20 provinces and then outlined the spectra of mammalian viruses within these individuals and the basic ecological and genetic characteristics of novel rodent and shrew viruses among the viral spectra. Further analysis revealed that host taxonomy plays a primary role and geographical location plays a secondary role in determining viral diversity. Many viruses were reported for the first time with distinct evolutionary lineages, and viruses related to known human or animal pathogens were identified. Phylogram comparison between viruses and hosts indicated that host shifts commonly happened in many different species during viral evolutionary history.ConclusionsThese results expand our understanding of the viromes of rodents and insectivores in China and suggest that there is high diversity of viruses awaiting discovery in these species in Asia. These findings, combined with our previous bat virome data, greatly increase our knowledge of the viral community in wildlife in a densely populated country in an emerging disease hotspot.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0554-9) contains supplementary material, which is available to authorized users.
In this study, biocompatible Fe(III) species‐WS2‐polyvinylpyrrolidone (Fe(III) @ WS2‐PVP) nanocapsules with enhanced biodegradability and doxorubicin (DOX) loading capacity are one‐pot synthesized. In this nanocapsule, there exists a redox reaction between Fe(III) species and WS2 to form Fe2+ and WO42−. The formed Fe2+ could be oxidized to Fe3+, which reacts with Fe(III) @ WS2‐PVP again to continuously produce Fe2+ and WO42−. Such a repeated endogenous redox reaction leads to an enhanced biodegradation and DOX release of DOX @ Fe(III) @ WS2‐PVP. More strikingly, the Fe2+ generation and DOX release are further accelerated by the overexpressed H2O2 and the mild acidic tumor microenvironment (TME), since H2O2 and H+ can accelerate the oxidation of Fe2+. The continuously generated Fe2+ catalyzes a fast Fenton reaction with the innate H2O2 in tumor cells and produces abundant highly toxic hydroxyl radicals for nanocatalytic tumor therapy. Together with the high photothermal transforming capability, the DOX @ Fe(III) @WS2‐PVP nanocapsules successfully achieve the endogenous redox reaction and exogenous TME‐augmented tumor photothermal therapy, chemo and nanocatalytic therapy outcome. The concept of material design can be innovatively extended to the synthesis of biodegradable Fe(III) @ MoS2‐PVP nanocomposite, thus paving a promising novel way for the rational design of intelligent theranostic agents for highly efficient treatment of cancer.
Polydopamine (PDA) is a simple and versatile conformal coating material that has been proposed for a variety of uses; however in practice its performance is often hindered by poor mechanical properties and high roughness. Here, we show that blue-diode laser annealing dramatically improves mechanical performance and reduces roughness of PDA coatings. Laser-annealed PDA (LAPDA) was shown to be >100-fold more scratch resistant than pristine PDA and even better than hard inorganic substrates, which we attribute to partial graphitization and covalent coupling between PDA subunits during annealing. Moreover, laser annealing provides these benefits while preserving other attractive properties of PDA, as demonstrated by the superior biofouling resistance of antifouling polymer-grafted LAPDA compared to PDA modified with the same polymer. Our work suggests that laser annealing may allow the use of PDA in mechanically demanding applications previously considered inaccessible, without sacrificing the functional versatility that is so characteristic of PDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.