Gambierol is a potent neurotoxin that belongs to the family of marine polycyclic ether natural products and primarily targets voltage-gated potassium channels (K(v) channels) in excitable membranes. Previous work in the chemistry of marine polycyclic ethers has suggested the critical importance of the full length of polycyclic ether skeleton for potent biological activity. Although we have previously investigated structure-activity relationships (SARs) of the peripheral functionalities of gambierol, it remained unclear whether the whole polycyclic ether skeleton is needed for its cellular activity. In this work, we designed and synthesized two truncated skeletal analogues of gambierol comprising the EFGH- and BCDEFGH-rings of the parent compound, both of which surprisingly showed similar potency to gambierol on voltage-gated potassium channels (K(v)) inhibition. Moreover, we examined the effect of these compounds in an in vitro model of Alzheimer's disease (AD) obtained from triple transgenic (3xTg-AD) mice, which expresses amyloid beta (Aβ) accumulation and tau hyperphosphorylation. In vitro preincubation of the cells with the compounds resulted in significant inhibition of K(+) currents, a reduction in the extra- and intracellular levels of Aβ, and a decrease in the levels of hyperphosphorylated tau. In addition, pretreatment with these compounds reduced the steady-state level of the N-methyl-D-aspartate (NMDA) receptor subunit 2A without affecting the 2B subunit. The involvement of glutamate receptors was further suggested by the blockage of the effect of gambierol on tau hyperphosphorylation by glutamate receptor antagonists. The present study constitutes the first discovery of skeletally simplified, designed polycyclic ethers with potent cellular activity and demonstrates the utility of gambierol and its synthetic analogues as chemical probes for understanding the function of K(v) channels as well as the molecular mechanism of Aβ metabolism modulated by NMDA receptors.
The polycyclic ether class of marine natural products has attracted the attention of researchers due to their complex and large chemical structures and diverse biological activities. Gambierol is a marine polycyclic ether toxin, first isolated along with ciguatoxin congeners from the dinoflagellate Gambierdiscus toxicus. The parent compound gambierol and the analogues evaluated in this work share the main crucial elements for biological activity, previously described to be the C28=C29 double bond within the H ring and the unsaturated side chain [Fuwa, H., Kainuma, N., Tachibana, K., Tsukano, C., Satake, M., and Sasaki, M. (2004) Diverted total synthesis and biological evaluation of gambierol analogues: Elucidation of crucial structural elements for potent toxicity. Chem. Eur. J. 10, 4894-4909]. With the aim to gain a deeper understanding of the cellular mechanisms involved in the biological activity of these compounds, we compared its activity in primary cultured neurons. The three compounds inhibited voltage-gated potassium channels (Kv) in a concentration-dependent manner and with similar potency, caused a small inhibition of voltage-gated sodium channels (Nav), and evoked cytosolic calcium oscillations. Moreover, the three compounds elicited a "loss of function" effect on Kv channels at concentrations of 0.1 nM. Additionally, both the tetracyclic and the heptacyclic derivatives of gambierol elicited synchronous calcium oscillations similar to those previously described for gambierol in cultured cerebellar neurons. Neither gambierol nor its tetracyclic derivative elicited cell toxicity, while the heptacyclic analogue caused a time-dependent decrease in cell viability. Neither the tetracyclic nor the heptacyclic analogues of gambierol exhibited lethality in mice after ip injection of 50 or 80 μg/kg of each compound. Altogether, the results presented in this work support an identical mechanism of action for gambierol and its tetracyclic and heptacyclic analogues and indicate a "loss of function" effect on potassium channels even after administration of the three compounds at subnanomolar concentrations. In addition, because gambierol is known to stabilize the closed state of Kv3 channels, the results presented in this paper may have implications for understanding of channel functions and for future development of therapies against ciguatera poisoning and potassium channel-related diseases.
A catalytic amount of TEMPO in the presence of PhI(OAc)(2) effected oxidative lactonization of 1,6- and 1,7-diols, directly affording seven- and eight-membered lactones, respectively, in good yields.
We describe herein a concise synthesis of (+)-neopeltolide, a marine macrolide natural product that elicits a highly potent antiproliferative activity against several human cancer cell lines. Our synthesis exploited the powerful bond-forming ability and high functional group compatibility of olefin metathesis and esterification reactions to minimize manipulations of oxygen functionalities and to maximize synthetic convergency. Our findings include a chemoselective olefin cross-metathesis reaction directed by H-bonding, and a ring-closing metathesis conducted under non-high dilution conditions. Moreover, we developed a 16-member stereoisomer library of 8,9-dehydroneopeltolide to systematically explore the stereostructure-activity relationships. Assessment of the antiproliferative activity of the stereoisomers against A549 human lung adenocarcinoma, MCF-7 human breast adenocarcinoma, HT-1080 human fibrosarcoma, and P388 murine leukemia cell lines has revealed marked differences in potency between the stereoisomers. This study provides comprehensive insights into the structure-activity relationship of this important antiproliferative agent, leading to the identification of the pharmacophoric structural elements and the development of truncated analogues with nanomolar potency.
Gambierol and its heptacyclic and tetracyclic analogs were tested for inhibitory activity against the human voltage-gated potassium channel Kv1.2 (hKv1.2), which was stably expressed in Chinese hamster ovary (CHO) cells. Gambierol, the heptacyclic analog, and the tetracyclic analog inhibited the potassium current evoked by a step pulse from -80mV to 40mV. The IC50 values for the three compounds were 0.75±0.15nM, 7.6±1.2nM, and 28±4.0nM (the mean±SEM, n=3), respectively. The cytotoxic activity was examined in order to assess a relationship between cytotoxicity and inhibition of the hKv1.2. The IC50 values for gambierol, the heptacyclic analog, and the tetracyclic analog in the wild-type CHO cells were 95±7.1μM, 6.5±0.8μM (the mean±SEM, n=3), and >100μM (n=3), respectively, whereas those in the CHO cells stably expressing hKv1.2 were 78±5.8μM, 6.0±1.0μM (the mean±SEM, n=3), and >100μM (n=3). These results suggested that cytotoxicity is not triggered by inhibition of the human Kv1.2. The electrophysiological recording at the resting potential in the presence of gambierol, the heptacyclic analog, and the tetracyclic analog revealed the dose-dependent leak current, which was largest when the heptacyclic analog was administered to the cells. We thus propose that the leak current induced by these compounds might cause a fatal effect on the cultured cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.