Future-generation wireless networks should accommodate surging growth in mobile data traffic and support an increasingly high density of wireless devices. Consequently, as the demand for spectrum continues to skyrocket, a severe shortage of spectrum resources for wireless networks will reach unprecedented levels of challenge in the near future. To deal with the emerging spectrum-shortage problem, dynamic spectrum access techniques have attracted a great deal of attention in both academia and industry. By exploiting the cognitive radio techniques, secondary users (SUs) are capable of accessing the underutilized spectrum holes of the primary users (PUs) to increase the whole system’s spectral efficiency with minimum interference violations. In this paper, we mathematically formulate the spectrum access problem for interweave cognitive radio networks, and propose a usage-aware deep reinforcement learning based scheme to solve it, which exploits the historical channel usage data to learn the time correlation and channel correlation of the PU channels. We evaluated the performance of the proposed approach by extensive simulations in both uncorrelated and correlated PU channel usage cases. The evaluation results validate the superiority of the proposed scheme in terms of channel access success probability and SU-PU interference probability, by comparing it with ideal results and existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.