Recently, needs to rechargeable batteries have been diversified into various kinds due to expansion of their application range. Not only future high-performance batteries exceeding Li-ion batteries (LiBs), but also new concept ones, which are composed solely of common elements and have performance comparable to current LiBs, have become one of the important recent research targets in this area. Focusing rich abundance and very-high theoretical capacity (2980 mAh g-1, 8046 mAh cm-3) of aluminum (Al) metal, we have created new concept rechargeable batteries with the following anode reaction in chloroaluminate ionic liquids (ILs):1,2 4[Al2Cl7]- + 3e- ⇌ Al + 7[AlCl4]- Many research groups have also reported similar Al metal anode batteries.3 Herein, some sulfur (S) composite cathodes that enable the use of S(IV)/S electrode reaction are designed to greatly enhance the capacity of Al metal anode battery. The preparation and purification processes for 60.0-40.0 mol% AlCl3–[C2mim]Cl and 61.0-26.0-13.0 mol% AlCl3–NaCl–KCl IL electrolytes were identical with those described in our previous articles.1,2 Three types of cathode active materials, S-coated multi-walled carbon nanotube (S-MWCNT), sulfurized polyethylene glycol (SPEG),4 and sulfurized polyacrylonitrile (SPAN),5 were employed. All the S composite electrodes were prepared by pressing the mixtures of 50 wt% S-based cathode active materials, 45 wt% conductive additive (MWCNT), and 5 wt% polytetrafluoroethylene onto Mo plate current collectors. Al metal plate was employed as the anode active material. Electrochemical experiments were carried out with a commonly used three-electrode cell or a two-electrode sealed cell in an Ar gas-filled glove box with O2 and H2O < 1 ppm. Figure 1 shows multiple cyclic voltammograms recorded at a S-MWCNT composite electrode in a three-electrode cell with 60.0-40.0 mol% AlCl3–[C2mim]Cl at 298 K. When the potential scan was initiated from the rest potential to the negative direction, a pair of reduction and oxidation waves appeared with large over potential. These waves gradually varied with an increase in the number of cycles. Considering the article reported by Gao et al.,6 the redox waves observed in Fig. 1a can be regarded to be the following electrochemical reaction (S/S2-): 3S + 8[Al2Cl7]- + 6e- ⇌ Al2S3 + 14[AlCl4]- As for the positive scan from the rest potential (Fig. 1b), several oxidation and reduction waves were observed. Overpotential obviously diminished compared to that for the S/S2-. Similar electrode behavior for S in a Lewis acidic 63-37 mol% AlCl3–NaCl molten salt is reported by Marassi, et al.7 Given that the electrochemical reaction process is the same, the number of electrons involved in the reaction is estimated to be 4. Then, the electrochemical reaction (S(IV)/S) is: [SCl3]+ + 3[Al2Cl7]- + 4e- ⇌ S + 6[AlCl4]- If we can apply this S(IV)/S reaction to the Al metal anode-S cathode rechargeable battery, S cathode capacity becomes double and higher working voltage is expected relative to conventional S/S2- one. Unfortunately, the redox waves for the reaction decrease sharply with increase in the cycle number. The waves almost disappeared at the 5th cycle. Analogous results were also obtained in the 61.0-26.0-13.0 mol% AlCl3–NaCl–KCl. We concluded that the electrode reaction for S(IV)/S on the S-MWCNT composite cathode is not suitable for battery application. However, the use of S-combined active materials, SPEG and SPAN, substantially improved the electrode reaction in the 61.0-26.0-13.0 mol% AlCl3–NaCl–KCl IL at 393 K. Thus, we carried out the charge-discharge test for the Al | SPEG and Al | SPAN batteries with the inorganic IL electrolyte using both S/S2- and S(IV)/S electrode reactions. If SPEG was used, the discharge capacity was ca. 1050 mAh (g-S)-1 at 50th cycle. When using only S/S2- reaction, such high capacity was not attained.2 The S(IV)/S electrode reaction should be directly involved in the capacity increase. Interestingly, the use of SPAN made further improvement possible. One of the typical results is shown in Fig. 2. At the first cycle, the discharge capacity reached ca. 4700 mAh (g-S)-1 and showed ca. 2600 mAh (g-S)-1 even after 50th cycle. These results suggest that the S-combined active material, i.e., SPEG and SPAN, composite electrodes can work as the high-capacity cathodes for Al metal anode rechargeable battery. This research was supported by JST-MIRAI program (JPMJMI17E9). SPAN was provided by ADEKA corporation. References Tsuda, et al., J. Electrochem. Soc., 161, A908 (2014). Tsuda, et al., Chem. Commun., 58, 1518 (2022). Ru, et al., J. Mater. Chem. A, 7, 14391 (2019). Kojima, et al., ECS Trans., 75, 201 (2017). S. Ahmed, et al., Adv. Sci., 8, 2101123 (2021). Gao, et al., Angew. Chem. Int. Ed., 55, 9898 (2016). Marassi, et al., J. Electrochem. Soc., 126, 231 (1979). Figure 1
Here, we report the draft genome sequence and annotation of Flavobacterium psychrophilum strain SSADA-1411. This strain was isolated from the skin ulcer of an ayu (Plecoglossus altivelis altivelis) migrating downriver to spawn in the lower Shimanto River, in western Kochi Prefecture on Shikoku Island in Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.