SummaryThe timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature.
Deep coalescence and introgression make it challenging to infer phylogenetic relationships among closely related species that arose through radiative speciation events. Despite numerous phylogenetic analyses and the availability of whole genomes, the phylogeny in the Anopheles gambiae species complex has not been confidently resolved. Here we extract over 80, 000 coding and noncoding short segments (called loci) from the genomes of six members of the species complex and use a Bayesian method under the multispecies coalescent model to infer the species tree, which takes into account genealogical heterogeneity across the genome and uncertainty in the gene trees. We obtained a robust estimate of the species tree from the distal region of the X chromosome: (A. merus, ((A. melas, (A. arabiensis, A. quadriannulatus)), (A. gambiae, A. coluzzii))), with A. merus to be the earliest branching species. This species tree agrees with the chromosome inversion phylogeny and provides a parsimonious interpretation of inversion and introgression events. Simulation informed by the real data suggest that the coalescent approach is reliable while the sliding-window analysis used in a previous phylogenomic study generates artifactual species trees. Likelihood ratio test of gene flow revealed strong evidence of autosomal introgression from A. arabiensis into A. gambiae (at the average rate of ∼0.2 migrants per generation), but not in the opposite direction, and introgression of the 3 L chromosomal region from A. merus into A. quadriannulatus. Our results highlight the importance of accommodating incomplete lineage sorting and introgression in phylogenomic analyses of species that arose through recent radiative speciation events.
Global Mycobacterium tuberculosis population comprises 7 major lineages. The Beijing strains, particularly the ones classified as Modern groups, have been found worldwide, frequently associated with drug resistance, younger ages, outbreaks and appear to be expanding. Here, we report analysis of whole genome sequences of 1170 M. tuberculosis isolates together with their patient profiles. Our samples belonged to Lineage 1–4 (L1–L4) with those of L1 and L2 being equally dominant. Phylogenetic analysis revealed several new or rare sublineages. Differential associations between sublineages of M. tuberculosis and patient profiles, including ages, ethnicity, HIV (human immunodeficiency virus) infection and drug resistance were demonstrated. The Ancestral Beijing strains and some sublineages of L4 were associated with ethnic minorities while L1 was more common in Thais. L2.2.1.Ancestral 4 surprisingly had a mutation that is typical of the Modern Beijing sublineages and was common in Akha and Lahu tribes who have migrated from Southern China in the last century. This may indicate that the evolutionary transition from the Ancestral to Modern Beijing sublineages might be gradual and occur in Southern China, where the presence of multiple ethnic groups might have allowed for the circulations of various co-evolving sublineages which ultimately lead to the emergence of the Modern Beijing strains.
Tilapia lake virus (TiLV) is an emerging virus that is rapidly spreading across the world.Over the past 6 years (2014-2020), TiLV outbreaks had been reported in at least 16 countries, spanning three continents, including Asia, Africa, and America. Despite its enormous economic impact, its origin, evolution and epidemiology are still largely poorly characterized. Here, we report eight TiLV whole-genome sequences from Thailand sampled between 2014 and 2019. Together with publicly available sequences from various regions of the world, we estimated the origin of TiLV to be between 2003 and 2009, 5-10 years before the first report of the virus in Israel in 2014. Our analyses consistently showed that TiLV started to spread in 2000s, and reached its peak in 2014-2016, matching well with the timing of its first report. From 2016 onwards, the global TiLV population declined steadily. This could be a result of herd immunity building up in the fish population, and/or a reflection of a better awareness of the virus coupled with a better and more cautious protocol of Tilapia importation. Despite the fact that we included all publicly available sequences, our analyses revealed long unsampled histories of TiLVs in many countries, especially towards its basal diversification. This result highlights the lack and the need for systematic surveillance of TiLV in fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.