In this work, we have developed an innovative epitaxial growth process named the “Migration Enhanced Embedded Epitaxial” (ME3) growth process. It was found that at elevated growth temperatures, the epitaxial growth at the bottom of the trenches is greatly enhanced compared to growth on the sidewalls. This is attributed to the large surface diffusion length of reactant species mainly due to the higher growth temperature. In addition, it was found that this high temperature ME3 growth process is not influenced by the crystal-orientation. Similar growth behavior was observed for stripe-trench structures aligned either along the [11-20] or [1-100] directions. No difference was observed in the electrical performance of the pn diodes fabricated on either oriented stripe geometry. The ME3 process can also be used as an alternative to ion-implantation technology for selective doping process.
This paper reviews the normally‐off (N‐ off) and normally‐on (N‐ on) SiC junction field effect transistor (JFET) concepts and presents an innovative all‐epitaxial double‐gate trench JFET (DGTJFET) structure. The DGTJFET design combines the advantages of lateral and buried gate JFET concepts. The lateral JFET advantage is the epitaxial definition of the channel width and the buried gate JFET advantage is the small cell size. In the DGTJFET process the epitaxial embedded growth in trenches facilitates the small cell pitch and the vertical direction of the channel. A detailed numerical simulation analysis compares the potential of the DGTJFET design with reported lateral channel and buried gate JFET structures. Migration enhanced embedded epitaxy (ME3) and planarization processes were developed to realize narrow cell pitch DGTJFETs for high‐density power integration. The highly doped vertical channel of the DGTJFET defined by the ME3 growth process makes it possible to accurately control the sub‐micron channel dimensions in order to realize a low specific on‐state resistance (RON) and a high saturation current capability. The anisotropic nature of SiC is taken into account for the channel design considerations. The successful application of the new process technologies for the development of the all‐epitaxial DGTJFETs is discussed. Fabricated 5.5 μm cell pitch 4H‐SiC DGTJFETs demonstrate the saturation current density capability of more than 1000 A/cm2. N‐ off and N‐ on DGTJFETs with 2.25 mm squared chip size and 9.5 μm cell pitch output 15 A and 20 A at gate voltage of 2.5 V and drain voltage of 5.0 V. The specific RON of the N‐ off and N‐ on DGTJFETs is at room temperature 8.1 m Ω cm2 and 6.3 mΩ cm2, respectively, indicating that N‐ off devices can be realized at the expense of a slight increase in specific RON of approximately 25%. DGTJFETs with a 13 μm drift layer doped to 5.0 × 1015 cm–3 are demonstrated with a breakdown voltage in the range of 1200 V to 1550 V at the wafer level with a leakage current below 10 μA. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
The in-situ doping of aluminum and nitrogen in migration enhanced embedded epitaxy (ME3) is investigated with the aim to apply it to the realization and fabrication of all-epitaxial, normally-off 4H-SiC JFET devices. This ME3 process consists of the epitaxial growth of an n-doped channel and a highly p-doped top gate in narrow trenches. We found that the nitrogen doping in the n-channel (a-face) is a factor 1.5 higher than layers grown with the same process on Si-face wafers. Due to the low C/Si ratio and the low silane flow rate used in the ME3 process, the growth of the p-doped top gate needs high flow rates of the aluminum precursor trimethylaluminum for several hours, which contaminates the CVD reactor and causes aluminum memory effects. These aluminum memory effects can be reduced by an extra high temperature bake-out run.
The migration enhanced embedded epitaxy (ME3) mechanism and 2D dopant distribution of the embedded trench region is investigated with the aim to realize the all-epitaxial, normally-off junction field effect transistor (JFET). We found that the embedded growth consists of two main components. First one is the direct supply without gas scattering and the other one is the surface migration supply via the trench opening edge, which dominate the ME3 process. An inhomogeneous 2D distribution of Aluminum (Al) concentration was revealed for the first time in the 4H-SiC embedded trench regions by the combined analysis of secondary ion mass spectrometry (SIMS) and scanning spreading resistance microscopy (SSRM) results. The maximum variation of Al concentration in the trench is estimated to be about 4-times, which suggests that the Al concentration is highest for the (0001) plane and lowest for the trench corner (1-10x) plane. Al concentration in the (1-100) plane, which determines the JFET p-gate doping level is 1.5-times lower than (0001) plane for trench region fabricated on Si-face wafers.
In this work, we have developed a selective embedded epitaxial growth process on 150-mm-diameter wafer by vertical type hot wall CVD reactor with the aim to realize the all-epitaxial 4H-SiC MOSFETs [1, 2, 3, 4, 5]. We found that at elevated temperature and adding HCl, the epitaxial growth rate at the bottom of trench is greatly enhanced compare to growth on the mesa top. And we obtain high growth rate 7.6μm/h at trench bottom on 150mm-diameter-wafer uniformly with high speed rotation (1000rpm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.