We present a simple, rapid, and robust method for preparing asymmetric cell-sized lipid bilayer vesicles using water-in-oil (W/O) microdroplets transferred through an oil-water interface. The efficiency for producing cell-sized model membranes is elucidated in relation to the vesicular size and the weight of contained water-soluble molecules. We demonstrate the biological asymmetric nature and the formation of lipid raft microdomain structures using fluorescence microscopy.
We present a comprehensive study of the synthesis, heat capacity, crystal structures, UV-vis-NIR and mid-IR spectra, DFT calculations, and magnetic and electrical properties of a one-dimensional (1D) rhodium(I)-semiquinonato complex, [Rh(3,6-DBSQ-4,5-(MeO)2)(CO)2]∞ (3), where 3,6-DBSQ-4,5-(MeO)2(•-) represents 3,6-di-tert-butyl-4,5-dimethoxy-1,2-benzosemiquinonato radical anion. The compound 3 comprises neutral 1D chains of complex molecules stacked in a staggered arrangement with short Rh-Rh distances of 3.0796(4) and 3.1045(4) Å at 226 K and exhibits unprecedented bistable multifunctionality with respect to its magnetic and conductive properties in the temperature range of 228-207 K. The observed bistability results from the thermal hysteresis across a first-order phase transition, and the transition accompanies the exchange of the interchain C-H···O hydrogen-bond partners between the semiquinonato ligands. The strong overlaps of the complex molecules lead to unusually strong ferromagnetic interactions in the low-temperature (LT) phase. Furthermore, the magnetic interactions in the 1D chain drastically change from strongly ferromagnetic in the LT phase to antiferromagnetic in the room-temperature (RT) phase with hysteresis. In addition, the compound 3 exhibits long-range antiferromagnetic ordering between the ferromagnetic chains and spontaneous magnetization because of spin canting (canted antiferromagnetism) at a transition temperature T(N) of 14.2 K. The electrical conductivity of 3 at 300 K is 4.8 × 10(-4) S cm(-1), which is relatively high despite Rh not being in a mixed-valence state. The temperature dependence of electrical resistivity also exhibits a clear hysteresis across the first-order phase transition. Furthermore, the ferromagnetic LT phase can be easily stabilized up to RT by the application of a relatively weak applied pressure of 1.4 kbar, which reflects the bistable characteristics and demonstrates the simultaneous control of multifunctionality through external perturbation.
Lateral membrane organization into domains, such as lipid rafts, plays an important role in the selective association of biological and nonbiological materials on heterogeneous membrane surfaces. The localization of such materials has profound influence on cellular responses. We constructed a biomimetic water-in-oil microdroplet membrane to study the lateral localization of these materials at heterogeneous biological interfaces. As a case study, we studied selective association of amyloid β peptide on the constructed membrane surface. Amyloid β peptide has attracted much attention as one of these membraneassociating proteins because of its "role" in Alzheimer's disease pathology. Ternary lipid membranes covering microdroplets successfully produced lipid ordered structures, which mimicked biological lipid rafts. We revealed that amyloid β peptide selectively localizes within nonraft fluid membrane regions. The successful lateral organization in microdroplet membrane systems may lead to new opportunities for the study of molecular associations within heterogeneous membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.