Cell morphology is known to modulate the multipotential lineage commitment of stem cells. We provide a new strategy to induce the early lineage commitment of human mesenchymal stem cells (hMSCs) toward a cardiomyogenic fate through the formation of cell aggregates. A surface-immobilized polyamidoamine dendrimer with fifth generation of dendron structure was used during the culturing of hMSCs. These hMSCs cultured on the G5 surface formed aggregates through active migration and division. More than 22% of cardiac troponin-T (cTnT)-positive (cTnT +) cells in aggregates formed on the dendrimer surface; the population formed on the dendrimer surface was higher than that in conventional culture vessel. When cell aggregate were reseeded onto a fresh G5 surface, single cells migrated out of the aggregates, proliferated, and formed new aggregates. This passage method, accompanied with repetitive aggregate dispersion and formation, was applied to cultures over 40 days. The proportion of cTnT + cells increased to 62% by the end of third passage. Our results suggest that culturing hMSCs on G5 surface results in directed commitment of the hMSCs toward a cardiomyocyte-like fate.
Preventing the contamination of processed cells is required for achieving reproducible manufacturing. A droplet is one of the potential causes contamination in cell manufacturing. The present study elucidates the formation mechanism and characteristics of droplets based on the observation and detection of droplets on the base surface of the biological safety cabinet (BSC) where cell processing is conducted under unidirectional airflow. Pouring fluorescent solution into the vessel using a measuring pipette was conducted to visualize the formation of droplets by videos as well as visual detection by blacklight irradiation on the base surface of the BSC. The experiments revealed that airborne and non-airborne droplets emerged from bursting bubbles, which formed when the entire solution was pushed out of the measuring pipette. Therefore, the improving procedure of pouring technique when entire solution was not pushed out of the pipette realized no formation of the droplets due to the prevention of emergence of bubble. In addition, an alternative procedure in which the entire solution was poured into the deep point of the test tube prevented the flying of non-airborne droplets outside the tube, while airborne droplets that escaped the tube rode the airflow of BSC. These results suggested a method for the prevention of the droplet formation, as well as the deposit control of droplets onto the surface in BSC, leading to cleanup area in the BSC for changeover with environment continuity.
Dynamic changes of morphologies in human mesenchymal stem cells (hMSCs) were investigated on dendrimer surfaces with different capacities for fibronectin adsorption by changing the polymeric generation numbers of first (G1), third (G3), and fifth (G5) generations. The amount of adsorbed fibronectin on dendrimer surfaces increased with the generation number. Time-lapse observations revealed that cells on the G1 surface maintained their shape with formation of fibronectin fibrils in the bodies, introducing to the stabilization of focal adhesion with enriched stress fibers. Cells on the G3 surface showed partial contraction with degradation of fibril structures in the trailing edge. Cells on the G5 surface changed the shape by active extension and strong contracting without stabilization of focal adhesion through the formation of fibronectin aggregates and immature stress fibers. In addition, the paxillin which is a focal adhesion protein at lamellipodia was phosphorylated, leading to active lamellipodium protrusions. These results indicate that the amount and structure of fibronectin affects dynamic hMSC behaviors through the formation of cytoskeletons and focal adhesions.
Dynamic behaviors of cell aggregates on a dendrimer surface were investigated to drive the directed differentiation of human mesenchymal stem cells (hMSCs) toward a cardiomyogenic lineage. Cell aggregates on the polyamidoamine dendrimer surface with fifth-generation (G5) of dendron structure showed dynamic changes in morphology associated with repetitive stretching and contracting during migration. Spatial-temporal observations revealed cellular movement in single aggregates by their morphological change through stretching and contracting on the G5 surface, suggesting that the dynamic behavior of aggregate causes mixing of cells. However, aggregates without cell-substrate adhesions on the low-binding culture surface sustained their spherical morphology without cellular movement within a single aggregate. Furthermore, β-catenin was observed at nuclei in aggregates on the G5 surface, and expression of the cardiomyocyte marker cardiac Troponin T (cTnT) was detected. However, β-catenin localized to the nuclei only in the outer region of the aggregate on the low-binding culture surface, and cTnT expression was restricted at the exterior surface of the aggregates. These observations indicate that cell mixing within aggregates on the G5 surface induced the directed differentiation of hMSCs toward a cardiomyogenic lineage by nuclear translocation of β-catenin through dissociation of cell-cell adhesions. These results suggest that migration-driven aggregate behaviors on the dendrimer surface caused repeated morphological changes of aggregate through stretching and contracting, leading to the directed differentiation of hMSCs toward a cardiomyogenic fate commitment.
IntroductionRegenerative therapy is a developing field in medicine. In the production of cell products for these therapies, hygienic management is even more critical than in the production of a chemical drug. At the same time, however, care is required with the use of decontamination agents, considering their effects on cell viability and characteristics. To date, hydrogen peroxide (H2O2) is most widely used for decontamination in pharmaceutical plants and cell processing facilities.MethodsIn this study, we examined the effects of residual H2O2 in the atmosphere of cell processing units after decontamination on the viability and proliferation of mesenchymal stem cells derived from human bone marrow.ResultsWe detected residual H2O2 sufficient to affect cell proliferation and survival even more than 30 h after decontamination ended. Our results suggest a longer time period is required before starting operations after decontamination and that the operating time should be as short as possible.ConclusionsHere we show the effects of post-decontamination residual H2O2 on the viability and proliferation of mesenchymal stem cells derived from human bone marrow, which may provide us with important information about the hygienic management of cell processing facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.