With the objective of understanding the kinetic redox properties of triphenylamine derivatives in association with chemical reactions, for their future application in functional organic semiconductor devices, the electrochemical characteristics of 4‐(2,2‐diphenylethenyl)‐N,N‐bis(4‐methylphenyl)‐benzenamine (TPA) were evaluated. Based on cyclic voltammograms of TPA on Pt disk electrodes with diameters of 300 μm and 10 μm at slow and fast scan rates in an acetonitrile solution, the TPA.+ is stable, while the TPA2+ is unstable. Importantly, the unstable TPA2+ appears to break down by a subsequent chemical reaction. A Cottrell plot analysis from chronoamperometry of a solution containing TPA reveals that both the first and second oxidations are one‐electron reactions. Concerning the stabilization mechanism of the first oxidation state of TPA, the results of molecular orbital calculations indicate that the electrons of the HOMO level are distributed in the triphenylamine group, which induces a resonance‐stabilized TPA.+. Based on these results, TPA/TPA.+ is suggested to have a sufficient stability for further application in organic semiconductor devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.