The nonradiative decay pathways of jet-cooled para-methoxy methylcinnamate (p-MMC) and para-methoxy ethylcinnamate (p-MEC) have been investigated by picosecond pump-probe and nanosecond UV-Deep UV pump-probe spectroscopy. The possible relaxation pathways were calculated by the (time-dependent) density functional theory. We found that p-MMC and p-MEC at low excess energy undergo multistep intersystem crossing (ISC) from the bright S (ππ*) state to the lowest triplet T (ππ*) state via two competing pathways through the T state in the time scale of 100 ps: (a) stepwise ISC followed after the internal conversion (IC) from S to the dark nπ* state; (b) direct ISC from the S to T states. These picosecond multistep ISCs result in the torsion of C═C double bond by ∼95° in the T state, whose measured adiabatic energy and lifetime are 16577 cm and ∼20 ns, respectively, for p-MMC. These results suggest that the ISC processes play an indispensable role in the photoprotecting sunscreens in natural plants.
An experimental and theoretical study has been carried out to elucidate the nonradiative decay (NRD) and trans(E) → cis(Z) isomerization from the S1 (1ππ*) state of structural isomers of hydroxy methylcinnamate (HMC); ortho-, meta- and para-HMC (o-, m- and p-HMC). A low temperature matrix-isolation Fourier Transform Infrared (FTIR) spectroscopic study revealed that all the HMCs are cis-isomerized upon UV irradiation. A variety of laser spectroscopic methods have been utilized for jet-cooled gas phase molecules to investigate the vibronic structure and lifetimes of the S1 state, and to detect the transient state appearing in the NRD process. In p-HMC, the zero-point level of the S1 state decays as quickly as 9 ps. A transient electronic state reported by Tan et al. (Faraday Discuss. 2013, 163, 321-340) was reinvestigated by nanosecond UV-tunable deep UV pump-probe spectroscopy and was assigned to the T1 state. For m- and o-HMC, the lifetime at the zero-point energy level of S1 is 10 ns and 6 ns, respectively, but it becomes substantially shorter at an excess energy higher than 1000 cm-1 and 600 cm-1, respectively, indicating the onset of NRD. Different from p-HMC, no transient state (T1) was observed in m- nor o-HMC. These experimental results are interpreted with the aid of TDDFT calculations by considering the excited-state reaction pathways and the radiative/nonradiative rate constants. It is concluded that in p-HMC, the trans → cis isomerization proceeds via a [trans-S1 → 1nπ* → T1 → cis-S0] scheme. On the other hand, in o- and m-HMC, the isomerization proceeds via a [trans-S1 → twisting along the C[double bond, length as m-dash]C double bond by 90° on S1 → cis-S0] scheme. The calculated barrier height along the twisting coordinate agrees well with the observed onset of the NRD channel for both o- and m-HMC.
The electronic states and photochemistry including nonradiative decay (NRD) and trans(E) → cis(Z) isomerization of methylcinnamate (MC) and its hydrogen-bonded complex with methanol have been investigated under jet-cooled conditions.
The title compound, 2-ethylhexyl-4-methoxycinnamate (2EH4MC), is known as a typical ingredient of sunscreen cosmetics that effectively converts the absorbed UV-B light to thermal energy. This energy conversion process includes the nonradiative decay (NRD): trans–cis isomerization and finally going back to the original structure with a release of thermal energy. In this study, we performed UV spectroscopy for jet-cooled 2EH4MC to investigate the electronic/geometrical structures as well as the NRD mechanism. Laser-induced-fluorescence (LIF) spectroscopy gave the well-resolved vibronic structure of the S1–S0 transition; UV–UV hole-burning (HB) spectroscopy and density functional theory (DFT) calculations revealed the presence of syn and anti isomers, where the methoxy (−OCH3) groups orient in opposite directions to each other. Picosecond UV–UV pump–probe spectroscopy revealed the NRD process from the excited singlet (S1 (1ππ*)) state occurs at a rate constant of ∼1010–1011 s–1, attributed to internal conversion (IC) to the 1nπ* state. Nanosecond UV–deep UV (DUV) pump–probe spectroscopy identified a transient triplet (T1 (3ππ*)) state, whose energy (from S0) and lifetime are 18 400 cm–1 and 20 ns, respectively. These results demonstrate that the photoisomerization of 2EH4MC includes multistep internal conversions and intersystem crossings, described as "S1 (trans, 1ππ*) → 1nπ* → T1 (3ππ*) → S0 (cis)".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.