On the basis of non-covalent bond interactions in nucleic acids, we synthesized the deoxyadenosine derivatives tethering a phenyl group (X) and a naphthyl group (Z) by an amide linker, which mimic a Watson–Crick base pair. Circular dichroism spectra indicated that the duplexes containing X and Z formed a similar conformation regardless of the opposite nucleotide species (A, G, C, T and an abasic site analogue F), which was not observed for the natural duplexes. The ΔG370 values among the natural duplexes containing the A/A, A/G, A/C, A/T and A/F pairs differed by 5.2 kcal mol−1 while that among the duplexes containing X or Z in place of the adenine differed by only 1.9 or 2.8 kcal mol−1, respectively. Fluorescence quenching experiments confirmed that 2-amino purine opposite X adopted an unstacked conformation. The structural and thermodynamic analyses suggest that the aromatic hydrocarbon group of X and Z intercalates into a double helix, resulting in the opposite nucleotide base flipping into an unstacked position regardless of the nucleotide species. This observation implies that modifications at the aromatic hydrocarbon group and the amide linker may expand the application of the base pair-mimic nucleosides for molecular biology and biotechnology.
Novel deoxyadenosine derivatives tethering a phenyl or naphthyl group by means of an amido linker have been synthesized, and these derivatives, stacking on the 5' end of a DNA duplex, provide free energy contributions equal to or greater than that of the Watson-Crick A/T base pair.
We have synthesized the deoxyadenosine derivative tethering a phenyl group (X), which mimics the Watson-Crick A/T base pair. The RNA/DNA hybrid duplexes containing X in the middle of the DNA sequence showed a similar thermal stability regardless of the ribonucleotide species (A, G, C, or U) opposite to X, probably because of the phenyl group stacking inside of the duplex accompanied by the opposite ribonucleotide base flipped in an extrahelical position. The RNA strand hybridized with the DNA strand bearing X was cleaved on the 3'-side of the ribonucleotide opposite to X in the presence of MgCl2, and the RNA sequence to be cleaved was not restricted. The site-specific RNA hydrolysis suggests that the DNA strand bearing X has the advantage of the site-selective base flipping in the target sequence and the development of a "universal deoxyribozyme" to exclusively cleave a target RNA sequence.
A base flipping conformation is found in many biological processes, including DNA repair and DNA and RNA modification processes. To investigate the dynamics and energetics of this unusual conformation in a double helix, base flipping induced by the base pair analogues of deoxyadenosine and deoxycytidine derivatives tethering a phenyl or naphthyl group was investigated. DNA strands bearing the base pair analogues stabilized the base flipping conformation of a complementary RNA, resulting in a site-specific hydrolysis by specific base catalysis. Measurements of the hydrolysis rate and the thermal stability of DNA/RNA duplexes suggested an unconstrained flexibility of the flipped-out ribonucleotide. As established in the base flipping by DNA repair and DNA and RNA modification enzymes, the results suggested that base flipping occurred in competition with base pair formation. In addition, the deoxycytidine derivatives discriminated G from I (inosine), with respect to the base pair interaction energy, as observed for a damaged base or a weakened base pair search by DNA repair proteins. The base pair mimic nucleosides would be useful for investigating the base flipping conformation under the equilibrium with base pairing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.