Dendritic cells (DCs) can be differentiated from CD14+ monocytes in the presence of interferon-α (IFNα) and granulocyte/macrophage-colony stimulating factor (GM-CSF) in vitro and are known as IFN-DCs. Circulating blood CD56+ cells expressing high levels of CD14, HLA-DR and CD86 have been shown to spontaneously differentiate into DC-like cells in vitro after their isolation from blood. We show here that IFN-DCs expressing high levels of CD56 (hereafter, CD56(high+) IFN-DCs) can be differentiated in vitro from monocytes obtained as adherent cells from healthy donors and patients with metastatic melanoma. These cells expressed high levels of CD14, HLA-DR and CD86 and possessed many pseudopodia. These CD56(high+) IFN-DCs may be an in vitro counterpart of the circulating CD56+ CD14+ CD86+ HLA-DR+ cells in blood. Conventional mature DCs differentiated from monocytes as adherent cells in the presence of GM-CSF, IL-4 and TNF-α (hereafter, mIL-4DCs) did not express CD56 or CD14. In contrast to mIL-4DCs, the CD56(high+) IFN-DCs exhibited a stronger capacity to stimulate autologous CD56+ Vγ9γδT cells highly producing IFNγ in the presence of zoledronate and IL-2. The CD56(high+) IFN-DCs possessing HLA-A*0201 effectively induced Mart-1-modified melanoma peptide (A27L)-specific CD8+ T cells through preferential expansion of CD56+ Vγ9γδT cells in the presence of A27L, zoledronate and IL-2. Vaccination with CD56(high+) IFN-DCs copulsed with tumor antigens and zoledronate may orchestrate the induction of various CD56+ immune cells possessing high effector functions, resulting in strong immunological responses against tumor cells. This study may be relevant to the design of future clinical trials of CD56(high+) IFN-DCs-based immunotherapies for patients with melanoma.
SummaryThe finding that dendritic cells (DCs) orchestrate innate and adaptive immune responses has stimulated research on harnessing DCs for developing more effective vaccines for DC therapy. The expression of cytomegalovirus (CMV) antigens in glioblastoma multiforme (GBM) presents a unique opportunity to target these viral proteins for tumour immunotherapy. Here, we demonstrate that Vγ9γδT cells, innate immune cells activated by zoledronate (Z) and Vα24 natural killer (Vα24NK) cells, innate/adaptive immune cells activated by α‐galactosylceramide (G) can link innate and adaptive immunities through cross‐talk with interferon (IFN) DCs from patients with glioblastoma multiforme (GBM) and healthy donors in a manner that can amplify the activation and proliferation of CMVpp65‐specific CD8+ T cells. The IFN DCs derived from patients with GBM used in this study express lower levels of programmed cell death ligand (PD)‐L1 and PD‐L2 and higher levels of C‐C receptor 7 (CCR7) than the most commonly used mature interleukin (IL)‐4 DCs. The expression level of programmed cell death 1 (PD‐1) on CD8+ T cells, including CMVpp65‐specific CD8+ T cells, expanded by IFN DCs pulsed with the CMVpp65‐peptide and Z plus G (IFN DCs/P+Z+G), was lower than that expanded by IFN DCs pulsed with the peptide alone (IFN DCs/P). Multi‐functional T cells, including human leucocyte antigen (HLA)‐A*0201‐restricted CMVpp65‐specific CD8+ T cells, Vγ9γδT cells and Vα24NKT cells, efficiently kill the HLA‐A*0201‐positive GBM cell line expressing CMVpp65 protein (T98G). These findings indicate that DC therapy using IFN DCs/P+Z+G and/or CTL therapy using CMVpp65‐specific CD8+ T cells expanded by IFN DCs/P+Z+G may lead to a good clinical outcome for patients with GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.