Indoxyl sulfate (IS) is a protein-bound uremic toxin that progressively accumulates in plasma during chronic kidney disease (CKD), and its accumulation is associated with the progression of CKD. This study examined the intestinal secretion of IS using in situ single-pass intestinal perfusion in a rat model of renal insufficiency, MRP2- and BCRP-overexpressing Sf9 membrane vesicles, and Caco-2 cell monolayers. An in situ single-pass perfusion study in CKD model rats demonstrated that a small amount of IS is secreted into intestinal lumen after iv administration of IS, and the clearance increased AUC-dependently. An excess amount of IS (3 mm) partially inhibited the MRP2- and BCRP-mediated uptake of specific fluorescent substrates, CDCF and Lucifer yellow, respectively, into the membrane vesicles, although IS was not taken up at a physiological concentration, 10 μm. In the Caco-2 cell monolayers, the IS transport was higher in the absorptive direction than in the secretory direction (p < 0.05). p-Aminohippuric acid (PAH) strongly inhibited IS transport in both directions (absorptive, p = 0.142; secretory, p < 0.01). Given that the blood IS levels are much higher than those in the intestinal lumen, it is possible that this unknown PAH-sensitive system contributes to the intestinal IS secretion. Although in situ inhibition study is needed to confirm that this unknown transporter mediates the in vivo intestinal secretion of IS, we speculate that this unknown active efflux system works as a compensatory excretion pathway for excess organic anions such as IS especially in end-stage renal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.