We report the isolation, purification, genome-sequencing and characterization of a picorna-like virus from dead bees in Israel. Sequence analysis indicated that IAPV (Israeli acute paralysis virus) is a distinct dicistrovirus. It is most homologous to Kashmir bee virus and acute bee paralysis virus. The virus carries a 9487 nt RNA genome in positive orientation, with two open reading frames separated by an intergenic region, and its coat comprises four major proteins, the sizes of which suggest alternate processing of the polyprotein. IAPV virions also carry shorter, defective-interfering (DI)-like RNAs. Some of these RNAs are recombinants of different segments of IAPV RNA, some are recombinants of IAPV RNA and RNA from another dicistrovirus, and yet others are recombinants of IAPV and non-viral RNAs. In several of the DI-like RNAs, a sense-oriented fragment has recombined with its complement, forming hairpins and stem-loop structures. In previous reports, we have shown that potyviral and IAPV sequences are integrated into the genome of their respective hosts. The dynamics of information exchange between virus and host and the possible resistance-engendering mechanisms are discussed.
BackgroundCompartment boundaries are an essential developmental mechanism throughout evolution, designated to act as organizing centers and to regulate and localize differently fated cells. The hindbrain serves as a fascinating example for this phenomenon as its early development is devoted to the formation of repetitive rhombomeres and their well-defined boundaries in all vertebrates. Yet, the actual role of hindbrain boundaries remains unresolved, especially in amniotes.ResultsHere, we report that hindbrain boundaries in the chick embryo consist of a subset of cells expressing the key neural stem cell (NSC) gene Sox2. These cells co-express other neural progenitor markers such as Transitin (the avian Nestin), GFAP, Pax6 and chondroitin sulfate proteoglycan. The majority of the Sox2+ cells that reside within the boundary core are slow-dividing, whereas nearer to and within rhombomeres Sox2+ cells are largely proliferating. In vivo analyses and cell tracing experiments revealed the contribution of boundary Sox2+ cells to neurons in a ventricular-to-mantle manner within the boundaries, as well as their lateral contribution to proliferating Sox2+ cells in rhombomeres. The generation of boundary-derived neurospheres from hindbrain cultures confirmed the typical NSC behavior of boundary cells as a multipotent and self-renewing Sox2+ cell population. Inhibition of Sox2 in boundaries led to enhanced and aberrant neural differentiation together with inhibition in cell-proliferation, whereas Sox2 mis-expression attenuated neurogenesis, confirming its significant function in hindbrain neuronal organization.ConclusionsData obtained in this study deciphers a novel role of hindbrain boundaries as repetitive pools of neural stem/progenitor cells, which provide proliferating progenitors and differentiating neurons in a Sox2-dependent regulation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12915-016-0277-y) contains supplementary material, which is available to authorized users.
A universal vector (IL-60 and auxiliary constructs), expressing or silencing genes in every plant tested to date, is described. Plants that have been successfully manipulated by the IL-60 system include hard-to-manipulate species such as wheat (Triticum duram), pepper (Capsicum annuum), grapevine (Vitis vinifera), citrus, and olive (Olea europaea). Expression or silencing develops within a few days in tomato (Solanum lycopersicum), wheat, and most herbaceous plants and in up to 3 weeks in woody trees. Expression, as tested in tomato, is durable and persists throughout the life span of the plant. The vector is, in fact, a disarmed form of Tomato yellow leaf curl virus, which is applied as a double-stranded DNA and replicates as such. However, the disarmed virus does not support rolling-circle replication, and therefore viral progeny single-stranded DNA is not produced. IL-60 does not integrate into the plant's genome, and the construct, including the expressed gene, is not heritable. IL-60 is not transmitted by the Tomato yellow leaf curl virus's natural insect vector. In addition, artificial satellites were constructed that require a helper virus for replication, movement, and expression. With IL-60 as the disarmed helper “virus,” transactivation occurs, resulting in an inducible expressing/silencing system. The system's potential is demonstrated by IL-60-derived suppression of a viral-silencing suppressor of Grapevine virus A, resulting in Grapevine virus A-resistant/tolerant plants.
Hemorrhagic enteritis virus (HEV) belongs to the Adenoviridae family, a subgroup of adenoviruses (Ads) that infect avian species. In this article, the complete DNA sequence and the genome organization of the virus are described. The full-length of the genome was found to be 26,263 bp, shorter than the DNA of any other Ad described so far. The G + C content of the genome is 34.93%. There are short terminal repeats (39 bp), as described for other Ads. Genes were identified by comparison of the DNA and predicted amino acid sequences with published sequences of other Ads. The organization of the genome in respect to late genes (52K, IIIa, penton base, core protein, hexon, endopeptidase, 100K, pVIII, and fiber), early region 2 genes (polymerase, terminal protein, and DNA binding protein), and intermediate gene IVa2 was found to be similar to that of other human and avian Ad genomes. No sequences similar to E1 and E4 regions were found. Very low similarity to ovine E3 region was found. Open reading frames were identified with no similarity to any published Ad sequence.
A reverse-genetics approach was applied to identify genes involved in Tomato yellow leaf curl virus (TYLCV) resistance, taking advantage of two tomato inbred lines from the same breeding program-one susceptible (S), one resistant (R-that used Solanum habrochaites as the source of resistance. cDNA libraries from inoculated and non-inoculated R and S plants were compared, postulating that genes preferentially expressed in the R line may be part of the network sustaining resistance to TYLCV. Further, we assumed that silencing genes located at important nodes of the network would lead to collapse of resistance. Approximately 70 different cDNAs representing genes preferentially expressed in R plants were isolated and their genes identified by comparison with public databases. A Permease I-like protein gene encoding a transmembranal transporter was further studied: it was preferentially expressed in R plants and its expression was enhanced several-fold following TYLCV inoculation. Silencing of the Permease gene of R plants using Tobacco rattle virus-induced gene silencing led to loss of resistance, expressed as development of disease symptoms typical of infected susceptible plants and accumulation of large amounts of virus. Silencing of another membrane protein gene preferentially expressed in R plants, Pectin methylesterase, previously shown to be involved in Tobacco mosaic virus translocation, did not lead to collapse of resistance of R plants. Thus, silencing of a single gene can lead to collapse of resistance, but not every gene preferentially expressed in the R line has the same effect, upon silencing, on resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.