Plants transpire water through their tissues in order to move nutrients and water to the cells. Transpiration includes various mechanisms, primarily stomata movement, which controls the rate of CO2 and water vapor exchange between the tissues and the atmosphere. Assessment of stomatal conductance is available for gas exchange techniques at leaf level, yet these techniques are not scalable to the whole plant let alone a large vegetation area. Hyperspectral reflectance spectroscopy, which acquires hundreds of bands in a single scan, may capture a glimpse of the crop’s physiological activity and therefore meet the scalability challenge. In this study, classic chemometric analyses are used alongside advanced statistical learning algorithms in order to identify stomatal conductance cues in hyperspectral measurements of cotton plants experiencing a gradient of irrigation. Random forest of regression trees identified 23 wavelengths related to both structural properties of the plant as well as water content. Partial least squares regression succeeded in relating these wavelengths to stomatal conductance, but only partially (R2 < 0.2). An artificial neural network algorithm reported an R2 = 0.54 with an 89% error-free performance on the same data subset. This study discusses implementation of machine learning methodologies as a benchmark for deeper analysis of spectral information, such as required when searching for plant physiology-related attenuations embedded within reflectance spectra.
Chemical thinning of apple fruitlets is an important practice as it reduces the natural fruit load and, therefore, increases the size of the final fruit for commercial markets. In apples, one chemical thinner used is Metamitron, which is sold as the commercial product Brevis® (Adama, Israel). This thinner inhibits the electron transfer between Photosystem II and Quinone-a within light reactions of photosynthesis. In this study, we investigated the responses of two apple cultivars—Golden Delicious and Top Red—and photosynthetic light reactions after administration of Brevis®. The analysis revealed that the presence of the inhibitor affects both cultivars’ energetic status. The kinetics of the photoprotective mechanism’s sub-processes are attenuated in both cultivars, but this seems more severe in the Top Red cultivar. State transitions of the antenna and Photosystem II repair cycle are decreased substantially when the Metamitron concentration is above 0.6% in the Top Red cultivar but not in the Golden Delicious cultivar. These attenuations result from a biased absorbed energy distribution between photochemistry and photoprotection pathways in the two cultivars. We suggest that Metamitron inadvertently interacts with photoprotective mechanism-related enzymes in chloroplasts of apple tree leaves. Specifically, we hypothesize that it may interact with the kinases responsible for the induction of state transitions and the Photosystem II repair cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.