In mammals, a light-entrainable clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms by synchronizing oscillators throughout the brain and body. Notably, the nature of the relation between the SCN clock and subordinate oscillators in the rest of the brain is not well defined. We performed a high temporal resolution analysis of the expression of the circadian clock protein PERIOD2 (PER2) in the rat forebrain to characterize the distribution, amplitude and phase of PER2 rhythms across different regions. Eighty-four LEW/Crl male rats were entrained to a 12-h: 12-h light/dark cycle, and subsequently perfused every 30 min across the 24-h day for a total of 48 time-points. PER2 expression was assessed with immunohistochemistry and analyzed using automated cell counts. We report the presence of PER2 expression in 20 forebrain areas important for a wide range of motivated and appetitive behaviors including the SCN, bed nucleus, and several regions of the amygdala, hippocampus, striatum, and cortex. Eighteen areas displayed significant PER2 rhythms, which peaked at different times of day. Our data demonstrate a previously uncharacterized regional distribution of rhythms of a clock protein expression in the brain that provides a sound basis for future studies of circadian clock function in animal models of disease.
We performed a high temporal resolution analysis of the transcript level of two core clock genes, Period2 (Per2) and Bmal1, and a clock output gene, Dbp, in the suprachiasmatic nucleus (SCN), the master circadian clock, and in two forebrain regions, the lateral part of the central nucleus of the amygdala (CEAl), and dentate gyrus (DG), in rats. These regions, as we have shown previously, exhibit opposite rhythms in expression of the core clock protein, PERIOD2 (PER2). We found that the expression of Per2, Bmal1 and Dbp follow a diurnal rhythm in all three regions but the phase and amplitude of the rhythms of each gene vary across regions, revealing important regional differences in temporal dynamics underlying local daily rhythm generation in the mammalian forebrain. These findings underscore the complex temporal organization of subordinate circadian oscillators in the forebrain and raise interesting questions about the functional connection of these oscillators with the master SCN clock.
Endogenous nitric oxide (NO) is an important mediator in the processes that control biological clocks and circadian rhythms. The present study was designed to elucidate if NO synthase (NOS) activity in the brain, kidney, testis, aorta, and lungs and plasma NOx levels in mice are controlled by an endogenous circadian pacemaker. Male BALB/c mice were exposed to two different lighting regimens of either light-dark 14:10 (LD) or continuous lighting (LL). At nine different equidistant time points (commencing at 09:00h) blood samples and tissues were taken from mice. The plasma and tissue homogenates were used to measure the levels of NO2 + NO3- (NOx) and total protein. The NOx concentrations were determined by a commercial nitric oxide synthase assay kit, and protein content was assessed in each homogenate tissue sample by the Lowry method. Nitric oxide synthase activity was calculated as pmol/mg protein/h. The resulting patterns were analyzed by the single cosinor method for pre-adjusted periods and by curve-fitting programs to elucidate compound rhythmicity. The NOS activity in kidneys of mice exposed to LD exhibited a circadian rhythm, but no rhythmicity was detected in mice exposed to LL. Aortic NOS activity displayed 24h rhythmicity only in LL. Brain, testis, and lung NOS activity and plasma NOx levels displayed 24h rhythms both in LD and LL. Acrophase values of NOS activity in brain, kidney, testis, and lungs were at midnight corresponding to their behavioral activities. Compound rhythms were also detected in many of the examined patterns. The findings suggest that NOS activity in mouse brain, aorta, lung, and testis are regulated by an endogenous clock, while in kidney the rhythm in NOS activity is synchronized by the exogenous signals.
Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness and in some cases, mental retardation and deafness. Other neurological complications, particularly epilepsy, are rare. We report on a novel mutation identified in a patient with ND and profound mental retardation. The patient was diagnosed at the age of 6 months due to congenital blindness. At the age of 8 months he developed infantile spasms, which were diagnosed at 11 months as his EEG demonstrated hypsarrhythmia. Mutation analysis of the ND gene (NDP) of the affected child and his mother revealed a novel missense mutation at position c.134T > A resulting in amino acid change at codon V45E. To the best of our knowledge, such severe neurological involvement has not been previously reported in ND patients. The severity of the phenotype may suggest the functional importance of this site of the NDP gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.