Summary
Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments, Developmental and Adult. These two compartments are sequentially required for organ formation and maintenance. Although both Developmental and Adult progenitors are specified during the developmental period and express PPARγ, they have distinct micro-anatomical, functional, morphogenetic and molecular profiles. Further, the two compartments derive from different lineages, while adult adipose progenitors fate map from an SMA+ mural lineage, Developmental progenitors do not. Remarkably, the Adult progenitor compartment appears to be specified earlier than the Developmental cells, and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide discrete therapeutic target for childhood and adult obesity.
Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and ‘beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-CreERT2 and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function.
SUMMARY
Cold temperatures induce progenitor cells within white adipose tissue to form beige adipocytes that burn energy and generate heat, a potential anti-diabesity therapy. However, the potential to form cold-induced beige adipocytes declines with age. This creates a clinical roadblock to potential therapeutic use in older individuals, who constitute a large percentage of the obesity epidemic. Here we show aging murine and human beige progenitor cells display a cellular-aging-senescence-like phenotype that accounts for their age-dependent failure. Activating the senescence pathway, either genetically or pharmacologically, in young beige progenitors induces premature cellular senescence and blocks their potential to form cold-induced beige adipocytes. Conversely, genetically or pharmacologically reversing cellular aging, by targeting the p38/MAPK-p16Ink4a pathway in aged mouse or human beige progenitor cells, rejuvenates cold-induced beiging. This in turn increases glucose sensitivity. Collectively, these data indicate that anti-aging/senescence modalities could be a strategy to induce beiging thereby improving metabolic health in aging humans.
Beige/brite adipocytes are induced within white adipose tissues (WAT) and, when activated, consume glucose and fatty acids to produce heat. Classically, two stimuli have been used to trigger a beiging response: cold temperatures and β3-adrenergic receptor (Adrb3) agonists. These two beiging triggers have been used interchangeably but whether these two stimuli may induce beiging differently at cellular and molecular levels remains unclear. Here, we found that cold-induced beige adipocyte formation requires Adrb1, not Adrb3, activation. Adrb1 activation stimulates WAT resident perivascular (Acta2+) cells to form cold-induced beige adipocytes. In contrast, Adrb3 activation stimulates mature white adipocytes to convert into beige adipocytes. Necessity tests, using mature adipocyte-specific Prdm16 deletion strategies, demonstrated that adipocytes are required and are predominant source to generate Adrb3-induced, but not cold-induced, beige adipocytes. Collectively, we identify that cold temperatures and Adrb3 agonists activate distinct cellular populations that express different β-adrenergic receptors to induce beige adipogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.