The contents of numerous membrane lipids change upon ageing. However, it is unknown whether and how any of these changes are causally linked to lifespan regulation. Acyl chains contribute to the functional specificity of membrane lipids. In this study, working with C. elegans, we identified an acyl chain-specific sphingolipid, C22 glucosylceramide, as a longevity metabolite. Germline deficiency, a conserved lifespan-extending paradigm, induces somatic expression of the fatty acid elongase ELO-3, and behenic acid (22:0) generated by ELO-3 is incorporated into glucosylceramide for lifespan regulation. Mechanistically, C22 glucosylceramide is required for the membrane localization of clathrin, a protein that regulates membrane budding. The reduction in C22 glucosylceramide impairs the clathrin-dependent autophagic lysosome reformation, which subsequently leads to TOR activation and longevity suppression. These findings reveal a mechanistic link between membrane lipids and ageing and suggest a model of lifespan regulation by fatty acid-mediated membrane configuration.
The transcription factor SKN-1, the C. elegans ortholog of mammalian Nrf protein, is a well-known longevity factor, and its activation is observed in several long-lived models. SKN-1 also plays essential roles in xenobiotic and oxidative stress responses. Here, we report deleterious functions of SKN-1 in somatic stress resistance that may impair lifespan. Constitutive SKN-1 activation impairs animal resistance to several stresses, including heat, ER stress and mitochondrial stress, which result from the suppression of DAF-16, another master regulator of longevity. SKN-1 activation abrogates DAF-16 nuclear import and downregulates DAF-16 target genes under stress conditions, while SKN-1 inhibition promotes the expression of DAF-16 targets, even in long-lived mutants. Further, SKN-1 activation induces the expression of vitellogenin proteins, which are required for SKN-1-mediated suppression of DAF-16 and stress resistance. Together, these findings identify detrimental roles for SKN-1 activation in animal health, and more importantly, inspire the rethinking of the complex roles for SKN-1 in aging regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.