Road cracks are one of the external manifestations of safety hazards in transportation. At present, the detection and segmentation of road cracks is still an intensively researched issue. With the development of image segmentation technology of the convolutional neural network, the identification of road cracks has also ushered in new opportunities. However, the traditional road crack segmentation method has these three problems: 1. It is susceptible to the influence of complex background noise information. 2. Road cracks usually appear in irregular shapes, which increases the difficulty of model segmentation. 3. The cracks appear discontinuous in the segmentation results. Aiming at these problems, a network segmentation model of HC-Unet++ road crack detection is proposed in this paper. In this network model, a deep parallel feature fusion module is first proposed, one which can effectively detect various irregular shape cracks. Secondly, the SEnet attention mechanism is used to eliminate complex backgrounds to correctly extract crack information. Finally, the Blurpool pooling operation is used to replace the original maximum pooling in order to solve the crack discontinuity of the segmentation results. Through the comparison with some advanced network models, it is found that the HC-Unet++ network model is more precise for the segmentation of road cracks. The experimental results show that the method proposed in this paper has achieved 76.32% mIOU, 82.39% mPA, 85.51% mPrecision, 70.26% dice and Hd95 of 5.05 on the self-made 1040 road crack dataset. Compared with the advanced network model, the HC-Unet++ network model has stronger generalization ability and higher segmentation accuracy, which is more suitable for the segmentation detection of road cracks. Therefore, the HC-Unet++ network model proposed in this paper plays an important role in road maintenance and traffic safety.
Apples are susceptible to infection by various pathogens during growth, which induces various leaf diseases and thus affects apple quality and yield. The timely and accurate identification of apple leaf diseases is essential to ensure the high-quality development of the apple industry. In practical applications in orchards, the complex background in which apple leaves are located poses certain difficulties for the identification of leaf diseases. Therefore, this paper suggests a novel approach to identifying and classifying apple leaf diseases in complex backgrounds. First, we used a bilateral filter-based MSRCR algorithm (BF-MSRCR) to pre-process the images, aiming to highlight the color and texture features of leaves and to reduce the difficulty of extracting leaf disease features with subsequent networks. Then, BAM-Net, with ConvNext-T as the backbone network, was designed to achieve an accurate classification of apple leaf diseases. In this network, we used the aggregate coordinate attention mechanism (ACAM) to strengthen the network’s attention to disease feature regions and to suppress the interference of redundant background information. Then, the multi-scale feature refinement module (MFRM) was used to further identify deeper disease features and to improve the network’s ability to discriminate between similar disease features. In our self-made complex background apple leaf disease dataset, the proposed method achieved 95.64% accuracy, 95.62% precision, 95.89% recall, and a 95.25% F1-score. Compared with existing methods, BAM-Net has higher disease recognition accuracy and classification results. It is worth mentioning that BAM-Net still performs well when applied to the task of the leaf disease identification of other crops in the PlantVillage public dataset. This indicates that BAM-Net has good generalization ability. Therefore, the method proposed in this paper can be helpful for apple disease control in modern agriculture, and it also provides a new reference for the disease identification of other crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.