Seedlings with four true leaves of cucumbers (Cucumis sativus L.), Guonong No.25 (a coldtolerant cultivar) and Guonong No.41 (a cold sensitive cultivar), were grown under normal or low temperature conditions: 25°C/18°C or 15°C/8°C (day/night). The seedlings of Guonong No.25 under low temperature were also treated with or without exogenous ABA. The purpose of our study was to find out the effects of low temperature and exogenous ABA application on the carbohydrate metabolism in the cucumber plants. Time course changes of carbohydrate contents and activities of stachyose synthase and alkaline a-galactosidase in the seedling leaves were investigated after the treatment. Our results show that compared to the seedlings under temperatures of 25°C/18°C, the seedlings of the both tested genotypes under 15°C/8°C (day/night) have significantly higher contents of all measured soluble carbohydrates. Significant difference in stachyose synthase activity is observed between the two genotypes under normal temperature or low temperature. Under normal temperature, leaf stachyose synthase activity in Guonong No.41 is higher than that in Guonong No.25. The stachyose synthase activity of Guonong No.41 decreases sharply under low temperature, but that of Guonong No.25 increases 3 days after treatment and then decreases to the original level. In contrast, there is no significant genotypic difference in alkaline a-galactosidase activity. Additionally, compared to the control seedlings treated with 0 lM ABA, the seedlings treated with 50 and 150 lM ABA accumulate substantial amounts of all tested soluble carbohydrates except galactose whereas 250 lM ABA treated seedlings show decreased levels of all these soluble carbohydrates. Stachyose synthase activity increases significantly upon 50 and 150 lM ABA treatments.
Background
D-allulose, a hexulose monosaccharide with low calorie content and high sweetness, is commonly used as a functional sugar in food and nutrition. However, enzyme preparation of D-allulose from D-frutose was severely hindered by the non-enzymatic browning under alkaline and high-temperature, and the unnecessary by-products further increased the difficulties in separation and extraction for industrial applications. Here, to address the above issue during the production process, a tandem D-allulose 3-epimerase (DPEases) isomerase synergistic expression strategy and an auto-inducible promoter engineering were levered in Bacillus subtilis 168 (Bs168) for efficient synthesis of D-allulose under the acidic conditions without browning.
Results
First, based on the dicistron expression system, two DPEases with complementary functional characteristics from Dorea sp. CAG:317 (DSdpe) and Clostridium cellulolyticum H10 (RCdpe) were expressed in tandem under the promoter HpaII in one cell. A better potential strain Bs168/pMA5-DSdpe-RCdpe increases enzyme activity to 18.9 U/mL at acidic conditions (pH 6.5), much higher than 17.2 and 16.7 U/mL of Bs168/pMA5-DSdpe and Bs168/pMA5-RCdpe, respectively. Subsequently, six recombinant strains based on four constitutive promoters were constructed in variable expression cassettes for improving the expression level of protein. Among those engineered strains, Bs168/pMA5-PspoVG-DSdpe-PsrfA-RCdpe exhibited the highest enzyme activity with 480.1 U/mL on fed-batch fermentation process in a 5 L fermenter at pH 6.5, about 2.1-times higher than the 228.5 U/mL of flask fermentation. Finally, the maximum yield of D-allulose reached as high as 163.5 g/L at the fructose concentration (50% w/v) by whole-cell biocatalyst.
Conclusion
In this work, the engineered recombinant strain Bs168/pMA5-PspoVG-DSdpe-PsrfA-RCdpe was demonstrated as an effective microbial cell factory for the high-efficient synthesis of D-allulose without browning under acidic conditions. Based on the perspectives from this research, this strategy presented here also made it possible to meet the requirements of the industrial hyper-production of other rare sugars under more acidic conditions in theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.