How autophagy, an evolutionarily conserved intracellular catabolic system for bulk degradation, selectively degrades protein aggregates is poorly understood. Here, we show that several maternally derived germ P granule components are selectively eliminated by autophagy in somatic cells during C. elegans embryogenesis. The activity of sepa-1 is required for the degradation of these P granule components and for their accumulation into aggregates, termed PGL granules, in autophagy mutants. SEPA-1 forms protein aggregates and is also a preferential target of autophagy. SEPA-1 directly binds to the P granule component PGL-3 and also to the autophagy protein LGG-1/Atg8. SEPA-1 aggregates consistently colocalize with PGL granules and with LGG-1 puncta. Thus, SEPA-1 functions as a bridging molecule in mediating the specific recognition and degradation of P granule components by autophagy. Our study reveals a mechanism for preferential degradation of protein aggregates by autophagy and emphasizes the physiological significance of selective autophagy during animal development.
Small heterodimer partner (SHP, NR0B2) is a unique member of the nuclear receptor (NR) superfamily that contains the dimerization and ligand-binding domain found in other family members, but lacks the conserved DNA binding domain. The ability of SHP to bind directly to multiple NRs is crucial for its physiological function as a transcriptional inhibitor of gene expression. A wide variety of interacting partners for SHP have been identified, indicating the potential for SHP to regulate an array of genes in different biological pathways. In this review, we summarize studies concerning the structure and target genes of SHP and discuss recent progress in understanding the function of SHP in bile acid, cholesterol, triglyceride, glucose, and drug metabolism. In addition, we review the regulatory role of SHP in microRNA (miRNA) regulation, liver fibrosis and cancer progression. The fact that SHP controls a complex set of genes in multiple metabolic pathways suggests the intriguing possibility of developing new therapeutics for metabolic diseases, including fatty liver, dyslipidemia and obesity, by regulating SHP with small molecules. To achieve this goal, more progress regarding SHP ligands and protein structure will be required. Besides its metabolic regulatory function, studies by us and other groups provide strong evidence that SHP plays a critical role in the development of cancer, particularly liver and breast cancer. An increased understanding of the fundamental mechanisms by which SHP regulates the development of cancers will be critical in applying knowledge of SHP in diagnostic, therapeutic or preventive strategies for specific cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.