Closeness centrality (CC) measure, as a well-known global measure, is widely applied in many complex networks. However, the classical CC presents many problems for flow networks since these networks are directed and weighted. To address these issues, we propose an effective distance based closeness centrality (EDCC), which uses effective distance to replace conventional geographic distance and binary distance obtained by Dijkstra's shortest path algorithm. The proposed EDCC considers not only the global structure of the network but also the local information of nodes. And it can be well applied in directed or undirected, weighted or unweighted networks. Susceptible-Infected model is utilized to evaluate the performance by using the spreading rate and the number of infected nodes. Numerical examples simulated on four real networks are given to show the effectiveness of the proposed EDCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.