IMPORTANCE Time spent in outdoor activities has decreased owing to home confinement for the coronavirus disease 2019 (COVID-19) pandemic. Concerns have been raised about whether home confinement may have worsened the burden of myopia owing to substantially decreased time spent outdoors and increased screen time at home. OBJECTIVE To investigate the refractive changes and prevalence of myopia in school-aged children during the COVID-19 home confinement. DESIGN, SETTING, AND PARTICIPANTSA prospective cross-sectional study using school-based photoscreenings in 123 535 children aged 6 to 13 years from 10 elementary schools in Feicheng, China, was conducted. The study was performed during 6 consecutive years (2015-2020). Data were analyzed in July 2020.EXPOSURES Noncycloplegic photorefraction was examined using a photoscreener device. MAIN OUTCOMES AND MEASURESThe spherical equivalent refraction was recorded for each child and the prevalence of myopia for each age group during each year was calculated. The mean spherical equivalent refraction and prevalence of myopia were compared between 2020 (after home confinement) and the previous 5 years for each age group. RESULTSOf the 123 535 children included in the study, 64 335 (52.1%) were boys. A total of 194 904 test results (389 808 eyes) were included in the analysis. A substantial myopic shift (approximately −0.3 diopters [D]) was found in the 2020 school-based photoscreenings compared with previous years (2015-2019) for younger children aged 6 (−0.32 D), 7 (−0.28 D), and 8 (−0.29 D) years. The prevalence of myopia in the 2020 photoscreenings was higher than the highest prevalence of myopia within 2015-2019 for children aged 6 (21.5% vs 5.7%), 7 (26.2% vs 16.2%), and 8 (37.2% vs 27.7%) years. The differences in spherical equivalent refraction and the prevalence of myopia between 2020 and previous years were minimal in children aged 9 to 13 years.CONCLUSIONS AND RELEVANCE Home confinement during the COVID-19 pandemic appeared to be associated with a significant myopic shift for children aged 6 to 8 years according to 2020 school-based photoscreenings. However, numerous limitations warrant caution in the interpretation of these associations, including use of noncycloplegic refractions and lack of orthokeratology history or ocular biometry data. Younger children's refractive status may be more sensitive to environmental changes than older ages, given the younger children are in a critical period for the development of myopia.
Purpose To study the epidemiology of myopia in school-aged children in Tianjin and the relationship between visual acuity-based screening and refraction-based screening. Method This school-based prospective cohort study was performed on children from 42 elementary schools and 17 middle schools in Tianjin, China. Totally 14,551 children, ages ranging from 5 to 16 years, were included in this study. Uncorrected visual acuity (UCVA) was determined by logarithmic tumbling E chart. Non-cycloplegic photorefraction was examined by the Spot (v2.1.4) photoscreener. The relationship between the UCVA and refractive error was investigated for different age groups. Results The overall prevalence of myopia at this school based screen is 78.2%, ranged from 10% at age of 5 to 95% at age of 16. The most dramatic increase in prevalence is from age of 6 (14.8%) to age of 7 (38.5%). The overall prevalence of high myopia is 2.5%. UCVA is found corresponding to spherical equivalent refraction (SER) in a manner of normal distribution and is significantly affected by age. When using UCVA to estimate the prevalence of myopia, the overall sensitivity and specificity are 0.824 and 0.820, respectively. Age-dependent optimal cutoff points and 95% confident intervals of such estimation are reported. Conclusions Myopia is heavily affecting school-aged children in Tianjin, China. The refraction screening is preferable for myopia screening, whereas the UCVA screening results need to be interpreted in an age-dependent manner for myopia estimation.
BackgroundThe prevalence of adolescent eye disease in remote areas of the Qinghai-Tibet Plateau has rarely been reported. To understand the prevalence of common eye diseases in Tibet, we performed ocular-disease screening on students from primary and secondary schools in Tibet, and compared the prevalence to that in the Central China Plain (referred to here as the “plains area”).MethodsThe refractive status of students was evaluated with a Spot™ vision screener. The test was conducted three or fewer times for both eyes of each student and results with best correction were recorded.ResultsA total of 3246 students from primary and secondary schools in the Tibet Naidong district were screened, yielding a refractive error rate of 28.51%, which was significantly lower than that of the plains group (28.51% vs. 56.92%, p < 0.001). In both groups, the prevalence of refractive errors among females was higher than that among males.ConclusionsWe found that Tibetan adolescents had a lower prevalence of refractive errors than did adolescents in the plains area, which may be related to less intensive schooling and greater exposure to sunlight.
Amblyopia risk factors in children with autism spectrum disorders (ASD) are usually hard to detect in early childhood due to poor cooperation and has not been reported in the Chinese population. We screened 168 Chinese children with ASD, aged between 3 and 8 years, and 264 age-matched neurotypical children with Spot photoscreener and basic ophthalmologic examinations. Children with ASD were found to have normal refractive status but significantly higher incidence of strabismus (16.1%), compared with control children (1.5%) (p < 0.01). Most of the cases of strabismus found in children with ASD were classified as esodeviation. Strabismus in children with ASD should be considered more seriously as an amblyopia risk factor by ophthalmologists and other healthcare professionals.
ImportanceProgression of myopia in a school-aged population due to home confinement (January to May 2021) during the COVID-19 pandemic has been previously reported. A key remaining question was whether the myopia spike in children aged 6 to 8 years persisted.ObjectiveTo investigate the changes in refractive status and prevalence of myopia in school-aged children 1 year after home confinement ended in China.Design, Setting, and ParticipantsThis cross-sectional study with a cohort substudy prospectively evaluated data from school-based photoscreening in Feicheng, China. Children aged 6 to 13 years participated in 8 screenings from 2015 to 2021.ExposuresNoncycloplegic photorefraction was conducted using the Spot Vision photoscreener.Main Outcomes and MeasuresThe main outcomes were the differences in spherical equivalent refraction (SER) and prevalence of myopia between 2020 (during home confinement) and 2021 (after home confinement). The SER was recorded for each child, and the prevalence of myopia was calculated annually for each age group.ResultsA total of 325 443 children participated in the study (51.4% boys, 48.6% girls; age range, 6 to 13 years). Compared with 2020, the mean SER of children in 2021 increased significantly for those aged 6 (0.42 diopters [D]), 7 (0.41 D), and 8 (0.33 D) years. The prevalence of myopia in 2021 was similar to in 2019 for each age group (aged 6 years: 7.9% vs 5.7%; aged 7 years: 13.9% vs 13.6%; aged 8 years: 29.5% vs 26.2%). Both the prevalence of myopia and mean SER for these children returned to their prepandemic levels.Conclusions and RelevanceCompared with 2020, the prevalence of myopia among children aged 6 to 8 years in the 2021 screenings decreased, and the mean SER returned to prepandemic level. The refractive development in children aged 6 to 8 years may be most susceptible to environmental changes. These findings support the premise that age 6 to 8 years is a critical period for myopia development and suggest a need to focus preventive interventions for myopia control on children in this age range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.