SARS-CoV-2 is the pathogen responsible for the COVID-19 pandemic. The SARS-CoV-2 papain-like cysteine protease (PLpro) has been implicated in playing important roles in virus maturation, dysregulation of host inflammation, and antiviral immune responses. The multiple functions of PLpro render it a promising drug target. Therefore, we screened a library of approved drugs and also examined available inhibitors against PLpro. Inhibitor GRL0617 showed a promising in vitro IC50 of 2.1 μM and an effective antiviral inhibition in cell-based assays. The co-crystal structure of SARS-CoV-2 PLproC111S in complex with GRL0617 indicates that GRL0617 is a non-covalent inhibitor and it resides in the ubiquitin-specific proteases (USP) domain of PLpro. NMR data indicate that GRL0617 blocks the binding of ISG15 C-terminus to PLpro. Using truncated ISG15 mutants, we show that the C-terminus of ISG15 plays a dominant role in binding PLpro. Structural analysis reveals that the ISG15 C-terminus binding pocket in PLpro contributes a disproportionately large portion of binding energy, thus this pocket is a hot spot for antiviral drug discovery targeting PLpro.
IpaH enzymes are bacterial E3 ligases targeting host proteins for ubiquitylation. Two autoinhibition modes of IpaH enzymes have been proposed based on the relative positioning of the Leucine-rich repeat domain (LRR) with respect to the NEL domain. In mode 1, substrate-binding competitively displaces the interactions between theLRR and NEL to relieve autoinhibition. However, the molecular basis for mode 2 is unclear. Here, we present the crystal structures of Shigella IpaH9.8 and the LRR of IpaH9.8 in complex with the substrate of human guanylate-binding protein 1 (hGBP1). A hydrophobic cluster in the C-terminus of IpaH9.8LRR forms a hydrophobic pocket involved in binding the NEL domain, and the binding is important for IpaH9.8 autoinhibition. Substrate-binding destabilizes the hydrophobic cluster by inducing conformational changes of IpaH9.8LRR. Arg166 and Phe187 in IpaH9.8LRR function as sensors for substrate-binding. Collectively, our findings provide insights into the molecular mechanisms for the actication of IpaH9.8 in autoinhibition mode 2.
SARS-CoV-2 is the pathogen responsible for the COVID-19 pandemic. The SARS-CoV-2 papain-like cysteine protease has been implicated in virus maturation, dysregulation of host inflammation and antiviral immune responses. We showed that PLpro preferably cleaves the K48-ubiquitin linkage while also being capable of cleaving ISG15 modification. The multiple functions of PLpro render it a promising drug target. Therefore, we screened an FDA-approved drug library and also examined available inhibitors against PLpro. Inhibitor GRL0617 showed a promising IC50 of 2.1 μM. The co-crystal structure of SARS-CoV-2 PLpro-C111S in complex with GRL0617 suggests that GRL0617 is a non-covalent inhibitor. NMR data indicate that GRL0617 blocks the binding of ISG15 to PLpro. The antiviral activity of GRL0617 reveal that PLpro is a promising drug target for therapeutically treating COVID-19.
The SARS-CoV-2 papain-like protease (PLpro), which has deubiquitinating activity, suppresses the type I interferon (IFN-I) antiviral response. We investigated the mechanism by which PLpro antagonizes cellular antiviral responses. In HEK392T cells, PLpro removed K63-linked polyubiquitin chains from Lys 289 of the stimulator of interferon genes (STING). PLpro-mediated deubiquitination of STING disrupted the STING-IKKε-IRF3 complex that induces the production of IFN-β and IFN-stimulated cytokines and chemokines. In human airway cells infected with SARS-CoV-2, the combined treatment with the STING agonist diABZi and the PLpro inhibitor GRL0617 resulted in the synergistic inhibition of SARS-CoV-2 replication and increased IFN-I responses. The PLpros of seven human coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63) and four SARS-CoV-2 variants of concern (α, β, γ, and δ) all bound to STING and suppressed STING-stimulated IFN-I responses in HEK293T cells. These findings reveal how SARS-CoV-2 PLpro inhibits IFN-I signaling through STING deubiquitination and a general mechanism used by seven human coronaviral PLpros to dysregulate STING and to facilitate viral innate immune evasion. We also identified simultaneous pharmacological STING activation and PLpro inhibition as a potentially effective strategy for antiviral therapy against SARS-CoV-2.
Coronaviruses that can infect humans can cause either common colds (HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43) or severe respiratory symptoms (SARS-CoV-2, SARS-CoV, and MERS-CoV). The papain-like proteases (PLPs) of SARS-CoV, SARS-CoV-2, MERS-CoV, and HCoV-NL63 function in viral innate immune evasion and have deubiquitinating (DUB) and deISGylating activities. We identified the PLPs of HCoV-229E, HCoV-HKU1, and HCoV-OC43 and found that their enzymatic properties correlated with their ability to suppress innate immune responses. A conserved noncatalytic aspartic acid residue was critical for both DUB and deISGylating activities, but the PLPs had differing ubiquitin (Ub) chain cleavage selectivities and binding affinities for Ub, K48-linked diUb, and interferon-stimulated gene 15 (ISG15) substrates. The crystal structure of HKU1-PLP2 in complex with Ub revealed binding interfaces that accounted for the unusually high binding affinity between this PLP and Ub. In cellular assays, the PLPs from the severe disease–causing coronaviruses strongly suppressed innate immune IFN-I and NF-κB signaling and stimulated autophagy, whereas the PLPs from the mild disease–causing coronaviruses generally showed weaker effects on immune suppression and autophagy induction. In addition, a PLP from a SARS-CoV-2 variant of concern showed increased suppression of innate immune signaling pathways. Overall, these results demonstrated that the DUB and deISGylating activities and substrate selectivities of these PLPs differentially contribute to viral innate immune evasion and may affect viral pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.