Colloidal nanoparticles are being intensely pursued in current nanoscience research. Nanochemists are often frustrated by the well-known fact that no two nanoparticles are the same, which precludes the deep understanding of many fundamental properties of colloidal nanoparticles in which the total structures (core plus surface) must be known. Therefore, controlling nanoparticles with atomic precision and solving their total structures have long been major dreams for nanochemists. Recently, these goals are partially fulfilled in the case of gold nanoparticles, at least in the ultrasmall size regime (1-3 nm in diameter, often called nanoclusters). This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties of atomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles (such as the stability, metal-ligand interfacial bonding, ligand assembly on particle surfaces, aesthetic structural patterns, periodicities, and emergence of the metallic state) and to develop a range of potential applications such as in catalysis, biomedicine, sensing, imaging, optics, and energy conversion. Although most of the research activity currently focuses on thiolate-protected gold nanoclusters, important progress has also been achieved in other ligand-protected gold, silver, and bimetal (or alloy) nanoclusters. All of these types of unique nanoparticles will bring unprecedented opportunities, not only in understanding the fundamental questions of nanoparticles but also in opening up new horizons for scientific studies of nanoparticles.
We demonstrate that nanoparticle self-assembly can reach the same level of hierarchy, complexity, and accuracy as biomolecules. The precise assembly structures of gold nanoparticles (246 gold core atoms with 80 p-methylbenzenethiolate surface ligands) at the atomic, molecular, and nanoscale levels were determined from x-ray diffraction studies. We identified the driving forces and rules that guide the multiscale assembly behavior. The protecting ligands self-organize into rotational and parallel patterns on the nanoparticle surface via C-H⋅⋅⋅π interaction, and the symmetry and density of surface patterns dictate directional packing of nanoparticles into crystals with orientational, rotational, and translational orders. Through hierarchical interactions and symmetry matching, the simple building blocks evolve into complex structures, representing an emergent phenomenon in the nanoparticle system.
Understanding how gold nanoclusters nucleate from Au(I)SR complexes necessitates the structural elucidation of nanoclusters with decreasing size. Toward this effort, we herein report the crystal structure of an ultrasmall nanocluster formulated as Au20(TBBT)16 (TBBT = SPh-t-Bu). The structure features a vertex-sharing bitetrahedral Au7 kernel and an unprecedented "ring" motif-Au8(SR)8. This large ring protects the Au7 kernel through strong Auring-Aukernel bonding but does not involve S-Aukernel bonding, in contrast to the common "staple" motifs in which the S-Aukernel bonding is dominant but the Austaple-Aukernel interaction is weak (i.e., aurophilic). As the smallest member in the TBBT "magic series", Au20(TBBT)16, together with Au28(TBBT)20, Au36(TBBT)24, and Au44(TBBT)28, reveals remarkable size-growth patterns in both geometric structure and electronic nature. Moreover, Au20(TBBT)16, together with the Au24(SR)20 and Au18(SR)14 nanoclusters, forms a "4e" nanocluster family, which illustrates a trend of shrinkage of bitetrahedral kernels from Au8(4+) to Au7(3+) and possibly to Au6(2+) with decreasing size.
Revealing the size-dependent periodicities (including formula, growth pattern, and property evolution) is an important task in metal nanocluster research. However, investigation on this major issue has been complicated, as the size change is often accompanied by a structural change. Herein, with the successful determination of the Au44(TBBT)28 structure, where TBBT = 4-tert-butylbenzenethiolate, the missing size in the family of Au28(TBBT)20, Au36(TBBT)24, and Au52(TBBT)32 nanoclusters is filled, and a neat "magic series" with a unified formula of Au8n+4(TBBT)4n+8 (n = 3-6) is identified. Such a periodicity in magic numbers is a reflection of the uniform anisotropic growth patterns in this magic series, and the n value is correlated with the number of (001) layers in the face-centered cubic lattice. The size-dependent quantum confinement nature of this magic series is further understood by empirical scaling law, classical "particle in a box" model, and the density functional theory calculations.
Understanding the isomerism phenomenon at the nanoscale is a challenging task because of the prerequisites of precise composition and structural information on nanoparticles. Herein, we report the ligand-induced, thermally reversible isomerization between two thiolate-protected 28-gold-atom nanoclusters, i.e. Au28(S-c-C6H11)20 (where -c-C6H11 = cyclohexyl) and Au28(SPh-(t)Bu)20 (where -Ph-(t)Bu = 4-tert-butylphenyl). The intriguing ligand effect in dictating the stability of the two Au28(SR)20 structures is further investigated via dispersion-corrected density functional theory calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.