Self‐assembly of cyclohexyl cyclic (alkyl)(amino)carbenes (cyCAAC) can be realized and reversibly switched from a close‐packed trimer phase to a chainlike dimer phase, enabled by the ring‐flip of the cyclohexyl wingtip. Multiple methods including scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations identified a distinct isomer (axial or equatorial chair conformer) in each phase, and consequently support the conclusion regarding the determination of molecular surface geometry on the self‐assembly of cyCAAC. Moreover, various substrates such as Ag (111) and Cu (111) are tested to elucidate the importance of cyCAAC‐surface interactions on cyCAAC based nanopatterns. These investigations of patterned surfaces prompted a deep understanding of cyCAAC binding mode, surface geometry and reversible self‐assembly, which are of paramount significance in the areas of catalysis, biosensor design and surface functionalization.
A radical relay strategy is described to synthesize functionalized β-amino alcohols. This strategy is enabled by photoredox-catalyzed and nitrogen-centered radical-triggered cascade reactions of styrenes (or phenylacetylenes), enol derivatives, and O-acyl hydroxylamines in DMSO. The broad synthetic application of this method is demonstrated by the reaction of structurally diverse reaction components, including complex molecular scaffolds. Multiple functional groups of the resultant highly functionalized β-amino alcohol derivatives facilitate their further transformations.
Cyclohexyl(alkyl)(amino)carbene (cyCAAC) bilden selbstorganisierende Monolagen, die durch den Ring‐Flip der Cyclohexyl‐Seitengruppe reversibel von einer dicht gepackten Trimer‐Phase in eine kettenartige Dimer‐Phase umgeschaltet werden können. Mehrere Methoden, darunter Rastertunnelmikroskopie (STM), Röntgen‐Photoelektronenspektroskopie (XPS) und Dichtefunktionaltheorie (DFT)‐Berechnungen, identifizierten ein eindeutiges Isomer (axiales oder äquatoriales Sesselkonformer) in jeder Phase und stützen somit die Schlussfolgerung hinsichtlich des Einflusses der molekularen Oberflächengeometrie auf die Selbstorganisation von cyCAAC. Darüber hinaus wurden verschiedene Substrate wie Ag(111) und Cu(111) getestet, um die Bedeutung der Wechselwirkungen zwischen cyCAAC und der Oberfläche für die auf cyCAAC basierenden Nanomuster aufzuklären. Die Untersuchungen von gemusterten Oberflächen führten zu einem tieferen Verständnis der cyCAAC‐Bindungsweise, der Oberflächengeometrie und der reversiblen Selbstorganisation, die in den Bereichen Katalyse, Biosensor‐Design und Oberflächenfunktionalisierung von herausragender Bedeutung sind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.