Facultative parthenocarpy is of great practical value. However, the molecular mechanism underlying facultative parthenocarpy remains elusive. Transcriptional co-repressors (TPL) act as a central regulatory hub controlling all nine phytohormone pathways. Previously, we proved that SlTPLs participate in the auxin signaling pathway by interacting with auxin/indole acetic acid (Aux/IAAs) in tomato; however, their function in fruit development has not been studied. In addition to their high expression levels during flower development, the interaction between SlTPL1 and SlIAA9 stimulated the investigation of its functional significance via RNA interference (RNAi) technology, whereby the translation of a protein is prevented by selective degradation of its encoded mRNA. Down-regulation of SlTPL1 resulted in facultative parthenocarpy. Plants of SlTPL1-RNAi transgenic lines produced similar fruits which did not show any pleiotropic effects under normal conditions. However, they produced seedless fruits upon emasculation and under heat stress conditions. Furthermore, SlTPL1-RNAi flower buds contained higher levels of cytokinins and lower levels of abscisic acid. To reveal how SlTPL1 regulates facultative parthenocarpy, RNA-seq was performed to identify genes regulated by SlTPL1 in ovaries before and after fruit set. The results showed that down-regulation of SlTPL1 resulted in reduced expression levels of cytokinin metabolism-related genes, and all transcription factors such as MYB, CDF, and ERFs. Conversely, down-regulation of SlTPL1 induced the expression of genes related to cell wall and cytoskeleton organization. These data provide novel insights into the molecular mechanism of facultative tomato parthenocarpy and identify SlTPL1 as a key factor regulating these processes.
Background
Open pit antimony (Sb) mining causes serious soil pollution, and phytoremediation is a low-cost approach to remediate heavy metal contaminated soil. Rhizosphere bacteria play an important role in ecological restoration in mining areas. There is a knowledge gap on how to find suitable rhizosphere microorganisms to improve the phytoremediation effect. Understanding the differences of rhizosphere bacterial diversity in different restoration stages is helpful to find suitable bacteria for ecological restoration.
Methods
A method of the substitution of “space” for “time” was used to study the effect of natural restoration on rhizosphere bacterial community. According to the dominant vegetation types (herb, shrub, and tree) in the natural restoration area of Sb mining, the early restoration (ER), middle restoration (MR), and later restoration (LR) from the largest Sb mine (Xikuangshan mine) in the world were selected to evaluate the differences in the composition and diversity of rhizosphere bacteria during three natural restoration stages. Each restoration stage had five samples. To determine the relationship between restoration stages and bacterial diversity in the rhizosphere, high throughput sequencing of PCR amplified were used.
Results
Alpha diversity, as assessed by Chao indices, appeared lowest in ER but this trend was not seen with other diversity metrics, including the Simpson and Shannon. Beta diversity analysis suggested there were differences in rhizobacterial community structure associate with restoration stage. At the phylum level, natural restoration led to a significant increase in the relative abundance of Actinobacteria in the MR, and a significant decrease in the relative abundance of Patescibacteria in the LR. Additionally, Calditrichaeota, Deferribacteres and Epsilonbacteraeota were only found in ER. At the genus level, the relative abundance of RB41 and Haliangium were highest in LR plots, while that of Bacillus and Gaiella were highest in ER plots. Additionally, the Azorhizobium genus was only detected in the ER phase. Overall, our findings suggested that several rhizosphere microbial communities had significant differences among three natural restoration stages (ER, MR, and LR) and the rhizosphere bacterial communities mainly appeared in the early restoration stage can be preferred for remediation of pollution soil in Xikuangshan.
Bidens pilosa is an annual invasive and Cd-hyperaccumulator herb. The complete chloroplast genome sequence of the B. pilosa is 150,542 bp in length, which is composed of a large single-copy region of 83,542 bp, a small single-copy region of 17,624 bp and a pair of inverted repeat regions of 24,688 bp. It encodes a set of 114 genes, consisting of 80 protein coding, 30 tRNA and 4 rRNA genes. Among all of these genes, 2 genes possess double introns, and 16 genes have a single intron. Phylogenetic analysis showed that B. pilosa clustered together with Marshallia obovata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.