The vehicle routing problem with task priority and limited resources (VRPTPLR) is a generalized version of the vehicle routing problem (VRP) with multiple task priorities and insufficient vehicle capacities. The objective of this problem is to maximize the total benefits. Compared to the traditional mathematical analysis methods, the pointer neural network proposed in this paper continuously learns the mapping relationship between input nodes and output decision schemes based on the actual distribution conditions. In addition, a global attention mechanism is adopted in the neural network to improve the convergence rate and results. To verify the effectiveness of the method, we model the VRPTPLR and compare the results with those of a genetic algorithm. The parameter sensitivity of each algorithm is assessed using different datasets. Then, comparison experiments with the two algorithms employing optimal parameter configurations are performed for the validation sets, which are generated at different instance scales. It is found that the solution time of the pointer neural network is much shorter than that of the genetic algorithm and that the proposed method provides better solutions for large-scale instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.