There has been a dramatic growth of shared mobility applications such as ride-sharing, food delivery and crowdsourced parcel delivery. Shared mobility refers to transportation services that are shared among users, where a central issue is route planning . Given a set of workers and requests, route planning finds for each worker a route, i.e. , a sequence of locations to pick up and drop off passengers/parcels that arrive from time to time, with different optimization objectives. Previous studies lack practicability due to their conflicted objectives and inefficiency in inserting a new request into a route, a basic operation called insertion . In this paper, we present a unified formulation of route planning called URPSM. It has a well-defined parameterized objective function which eliminates the contradicted objectives in previous studies and enables flexible multi-objective route planning for shared mobility. We prove the problem is NP-hard and there is no polynomial-time algorithm with constant competitive ratio for the URPSM problem and its variants. In response, we devise an effective and efficient solution to address the URPSM problem approximately. We design a novel dynamic programming (DP) algorithm to accelerate the insertion operation from cubic or quadric time in previous work to only linear time. On basis of the DP algorithm, we propose a greedy based solution to the URPSM problem. Experimental results on real datasets show that our solution outperforms the state-of-the-arts by 1.2 to 12.8 times in effectiveness, and also runs 2.6 to 20.7 times faster.
No abstract
A central issue in on-demand taxi dispatching platforms is task assignment, which designs matching policies among dynamically arrived drivers (workers) and passengers (tasks). Previous matching policies maximize the profit of the platform without considering the preferences of workers and tasks (e.g., workers may prefer high-rewarding tasks while tasks may prefer nearby workers). Such ignorance of preferences impairs user experience and will decrease the profit of the platform in the long run. To address this problem, we propose preference-aware task assignment using online stable matching. Specifically, we define a new model, Online Stable Matching under Known Identical Independent Distributions (OSM-KIID). It not only maximizes the expected total profits (OBJ-1), but also tries to satisfy the preferences among workers and tasks by minimizing the expected total number of blocking pairs (OBJ-2). The model also features a practical arrival assumption validated on real-world dataset. Furthermore, we present a linear program based online algorithm LP-ALG, which achieves an online ratio of at least 1−1/e on OBJ-1 and has at most 0.6·|E| blocking pairs expectedly, where |E| is the total number of edges in the compatible graph. We also show that a natural Greedy can have an arbitrarily bad performance on OBJ-1 while maintaining around 0.5·|E| blocking pairs. Evaluations on both synthetic and real datasets confirm our theoretical analysis and demonstrate that LP-ALG strictly dominates all the baselines on both objectives when tasks notably outnumber workers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.