Visual feature information regarding flotation foam is crucial for the flotation process. Owing to a large amount of noise and blur in the foam images collected in the floatation field, feature extraction and segmentation of foam images pose considerable challenges. Furthermore, the visual properties of foam are strongly correlated with current flotation conditions. Therefore, this study presents a method to repair blurred pixels in foam images. In addition to enhancing the image dataset necessary for network model training, the restored images can provide high-quality images extracting foam-feature information. In addition, this research presents a novel fifth-order residual structure that enlarges the network structure by stacking, enhancing the learning ability of complex networks. Experimental results demonstrate that the suggested method can achieve a satisfactory repair effect for foam images under various blurring conditions, laying a foundation for guiding the intelligent adjustment of flotation field parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.