We describe a novel learning-by-synthesis method for estimating gaze direction of an automated intelligent surveillance system. Recently, progress in learning-by-synthesis has proposed training models on synthetic images, which can effectively reduce the cost of manpower and material resources. However, learning from synthetic images still fails to achieve the desired performance compared to naturalistic images due to the different distribution of synthetic images. In an attempt to address this issue, previous method is to improve the realism of synthetic images by learning a model. However, the disadvantage of the method is that the distortion has not been improved and the authenticity level is unstable. To solve this problem, we put forward a new structure to improve synthetic images, via the reference to the idea of style transformation, through which we can efficiently reduce the distortion of pictures and minimize the need of real data annotation. We estimate that this enables generation of highly realistic images, which we demonstrate both qualitatively and with a user study. We quantitatively evaluate the generated images by training models for gaze estimation. We show a significant improvement over using synthetic images, and achieve state-of-the-art results on various datasets including MPIIGaze dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.