Enzymes are important and effective biological catalyst proteins participating in almost all active cell processes. Identification of multi-functional enzymes is essential in understanding the function of enzymes. Machine learning methods perform better in protein structure and function prediction than traditional biological wet experiments. Thus, in this study, we explore an efficient and effective machine learning method to categorize enzymes according to their function. Multi-functional enzymes are predicted with a special machine learning strategy, namely, multi-label classifier. Sequence features are extracted from a position-specific scoring matrix with autocross-covariance transformation. Experiment results show that the proposed method obtains an accuracy rate of 94.1% in classifying six main functional classes through five cross-validation tests and outperforms state-of-the-art methods. In addition, 91.25% accuracy is achieved in multi-functional enzyme prediction, which is often ignored in other enzyme function prediction studies. The online prediction server and datasets can be accessed from the link http://server.malab.cn/MEC/.
Background: Previously, we demonstrated the therapeutic efficacy of a human papillomavirus (HPV) vaccine, including HPV16 E7 peptide and CpG oligodeoxynucleotides (CpG ODN), against small TC-1 grafted tumors. Here, we developed an HPV16 E7 peptide and CpG ODN vaccine delivered using liposomes modified with DC-targeting mannose, Lip E7/CpG, and determined its anti-tumor effects and influence on systemic immune responses and the tumor microenvironment (TME) in a mouse large TC-1 grafted tumor model. Methods: L-alpha-phosphatidyl choline (SPC), cholesterol (CHOL), 1,2-distearoyl-snglycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000)] (DSPE-PEG-2000), 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) and Mannose-PEG-DSPE, loaded with HPV16 E7 peptide and CpG ODN, were used to construct the Lip E7/CpG vaccine. The anti-tumor effects and potential mechanism of Lip E7/CpG were assessed by assays of tumor growth inhibition, immune cells, in vivo cytotoxic T lymphocyte (CTL) responses and cytokines, chemokines, CD31, Ki67 and p53 expression in the TME. In addition, toxicity of Lip E7/CpG to major organs was evaluated. Results: Lip E7/CpG had a diameter of 122.21±8.37 nm and remained stable at 4°C for 7 days. Co-delivery of HPV16 E7 peptide and CpG ODN by liposomes exerted potent antitumor effects in large (tumor volume ≥200mm 3) TC-1 grafted tumor-bearing mice with inhibition rates of 80% and 78% relative to the control and Free E7/CpG groups, respectively. Vaccination significantly increased numbers of CD4+ and CD8+ T cells, and IFN-γproducing cells in spleens and tumors and enhanced HPV-specific CTL responses, while reducing numbers of inhibitory cells including myeloid-derived suppressor cells and macrophages. Expression of cytokines and chemokines was altered and formation of tumor blood vessels was reduced in the Lip E7/CpG group, indicating possible modulation of the immunosuppressive TME to promote anti-tumor responses. Lip E7/CpG did not cause morphological changes in major organs. Conclusion: Lip E7/CpG induced anti-tumor effects by enhancing cellular immunity and improving tumor-associated immunosuppression. Mannose-modified liposomes are the promising vaccine delivery strategy for cancer immunotherapy.
Cell mediated immune (CMI) responses are crucial for the clearance of human papillomavirus (HPV) infection and HPV-associated lesions. Activated CD8 T cells are critical effector cells in recognizing and killing HPV-infected or HPV-transformed cells. CD4 T cells provide help for priming the generation and maintenance of CD8 T cells as well as for tumors immunity. An ideal therapeutic HPV peptide-based vaccine should induce both a robust CD8 T-cell response as well as a CD4 T-cell response for ensuring their efficiency. Candida skin test reagent was demonstrated to be able to induce the secretion of IL-12 by Langerhans cells and T-cell proliferation in vitro by our group, which indicated the potential of Candida to enhance CMI response. In this current study, we designed a novel HPV peptide-based vaccine which includes HPV16 E7 peptides and Candida as an adjuvant. The immune responses induced by the vaccine were comprehensively evaluated. The results showed that the vaccine induced significant HPV-specific CD8 T-cell and Th1 CD4 T-cell responses as well as humoral immune response. It is interesting that Candida alone induced a significant polarization of Th1 response an production of IFN-γ, which indicated Candida alone may be used as a potential immunotherapeutic reagent not only for HPV-associated lesions but also for other viral infection or even cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.