Background: Human-induced pluripotent stem cells (hiPSCs) with normal or upregulated levels of CCND2 expression were differentiated into cardiomyocytes (CCND2 WT CMs or CCND2 OE CMs, respectively) and injected into infarcted pig hearts. Methods: Acute myocardial infarction (AMI) was induced via a 60-minute occlusion of the left-anterior descending coronary artery. Immediately after reperfusion, CCND2 WT CMs or CCND2 OE CMs (3×10 7 cells each), or an equivalent volume of the delivery vehicle was injected around the infarct border zone area. Results: The number of the engrafted CCND2 OE CMs exceeded that of the engrafted CCND2 WT CMs from 6 to 8-fold, rising from 1 week to 4 weeks post-implantation. In contrast to the treatment with the CCND2 WT CMs or the delivery vehicle, the administration of CCND2 OE CM was associated with significantly improved left-ventricular function, as revealed by magnetic resonance imaging (MRI). This correlated with the reduction of infarct size, fibrosis, ventricular hypertrophy, CM apoptosis, and the increase of vascular density and arterial density, as per the histological analysis of the treated hearts. Expression of the cell proliferation markers (e.g., Ki67, phosphorylated histone 3 [PH3] and Aurora Kinase B [Aurora B]) was also significantly upregulated in the recipient CMs from the CCND2 OE CM-treated than from the CCND2 WT CM-treated pigs. The cell proliferation rate and the hypoxia tolerance measured in cultured hiPSC-CMs were significantly greater after their treatment with exosomes isolated from the CCND2 OE CMs (CCND2 OE Exos) than from the CCND2 WT CMs (CCND2 WT Exos). As demonstrated by our study, CCND2 OE Exos can also promote the proliferation activity of postnatal rat and adult mouse cardiomyocytes. A bulk miRNA sequencing analysis of CCND2 OE Exos vs. CCND2 WT Exos identified 206 and 91 miRNAs that were significantly upand down-regulated, respectively. Gene ontology (GO) enrichment analysis identified significant differences in the expression profiles of miRNAs from various functional categories and pathways, including miRNAs implicated in cell-cycle checkpoints (G2/M and G1/S transitions), or the mechanism of cytokinesis. Conclusions: We have demonstrated that an enhanced potency of the CCND2 OE CMs promoted myocyte proliferation in both grafts and the recipient tissue in a large mammal acute myocardial infarction (AMI) model. These results suggest that the CCND2 OE CMs transplantation may be a potential therapeutic strategy for the repair of infarcted hearts.
One of the characteristics of the failing human heart is a significant alteration in its energy metabolism. Recently, a ketone body, β-hydroxybutyrate (β-OHB) has been implicated in the failing heart’s energy metabolism as an alternative “fuel source.” Utilization of β-OHB in the failing heart increases, and this serves as a “fuel switch” that has been demonstrated to become an adaptive response to stress during the heart failure progression in both diabetic and non-diabetic patients. In addition to serving as an alternative “fuel,” β-OHB represents a signaling molecule that acts as an endogenous histone deacetylase (HDAC) inhibitor. It can increase histone acetylation or lysine acetylation of other signaling molecules. β-OHB has been shown to decrease the production of reactive oxygen species and activate autophagy. Moreover, β-OHB works as an NLR family pyrin domain-containing protein 3 (Nlrp3) inflammasome inhibitor and reduces Nlrp3-mediated inflammatory responses. It has also been reported that β-OHB plays a role in transcriptional or post-translational regulations of various genes’ expression. Increasing β-OHB levels prior to ischemia/reperfusion injury results in a reduced infarct size in rodents, likely due to the signaling function of β-OHB in addition to its role in providing energy. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have been shown to exert strong beneficial effects on the cardiovascular system. They are also capable of increasing the production of β-OHB, which may partially explain their clinical efficacy. Despite all of the beneficial effects of β-OHB, some studies have shown detrimental effects of long-term exposure to β-OHB. Furthermore, not all means of increasing β-OHB levels in the heart are equally effective in treating heart failure. The best timing and therapeutic strategies for the delivery of β-OHB to treat heart disease are unknown and yet to be determined. In this review, we focus on the crucial role of ketone bodies, particularly β-OHB, as both an energy source and a signaling molecule in the stressed heart and the overall therapeutic potential of this compound for cardiovascular diseases.
Reperfusion injury after extended ischemia accounts for approximately 50% of myocardial infarct size, and there is no standard therapy. HDAC inhibition reduces infarct size and enhances cardiomyocyte autophagy and PGC1α-mediated mitochondrial biogenesis when administered at the time of reperfusion. Furthermore, a specific autophagy-inducing peptide, Tat-Beclin 1 (TB), reduces infarct size when administered at the time of reperfusion. However, since SAHA affects multiple pathways in addition to inducing autophagy, whether autophagic flux induced by TB maintains mitochondrial homeostasis during ischemia/reperfusion (I/R) injury is unknown. We tested whether the augmentation of autophagic flux by TB has cardioprotection by preserving mitochondrial homeostasis both in vitro and in vivo. Wild-type mice were randomized into two groups: Tat-Scrambled (TS) peptide as the control and TB as the experimental group. Mice were subjected to I/R surgery (45 min coronary ligation, 24 h reperfusion). Autophagic flux, mitochondrial DNA (mtDNA), mitochondrial morphology, and mitochondrial dynamic genes were assayed. Cultured neonatal rat ventricular myocytes (NRVMs) were treated with a simulated I/R injury to verify cardiomyocyte specificity. The essential autophagy gene, ATG7, conditional cardiomyocyte-specific knockout (ATG7 cKO) mice, and isolated adult mouse ventricular myocytes (AMVMs) were used to evaluate the dependency of autophagy in adult cardiomyocytes. In NRVMs subjected to I/R, TB increased autophagic flux, mtDNA content, mitochondrial function, reduced reactive oxygen species (ROS), and mtDNA damage. Similarly, in the infarct border zone of the mouse heart, TB induced autophagy, increased mitochondrial size and mtDNA content, and promoted the expression of PGC1α and mitochondrial dynamic genes. Conversely, loss of ATG7 in AMVMs and in the myocardium of ATG7 cKO mice abolished the beneficial effects of TB on mitochondrial homeostasis. Thus, autophagic flux is a sufficient and essential process to mitigate myocardial reperfusion injury by maintaining mitochondrial homeostasis and partly by inducing PGC1α-mediated mitochondrial biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.