At present, reliable and precise ship detection in high-resolution optical remote sensing images affected by wave clutter, thin clouds, and islands under complex sea conditions is still challenging. At the same time, object detection algorithms in satellite remote sensing images are challenged by color, aspect ratio, complex background, and angle variability. Even the results obtained based on the latest convolutional neural network (CNN) method are not satisfactory. In order to obtain more accurate ship detection results, this paper proposes a remote sensing image ship object detection method based on a brainlike visual attention mechanism. We refer to the robust expression mode of the human brain, design a vector field filter with active rotation capability, and explicitly encode the direction information of the remote sensing object in the neural network. The progressive enhancement learning model guided by the visual attention mechanism is used to dynamically solve the problem, and the object can be discovered and detected through time–space information. To verify the effectiveness of the proposed method, a remote sensing ship object detection data set is established, and the proposed method is compared with other state-of-the-art methods on the established data set. Experiments show that the object detection accuracy of this method and the ability to capture image details have been improved. Compared with other models, the average intersection rate of the joint is 80.12%, which shows a clear advantage. The proposed method is fast enough to meet the needs of ship detection in remote sensing images.
Motivation Artificially making clinical decisions for patients with multi-morbidity has long been considered a thorny problem due to the complexity of the disease. Drug recommendations can assist doctors in automatically providing effective and safe drug combinations conducive to treatment and reducing adverse reactions. However, the existing drug recommendation works ignored two critical information. (1) Different types of medical information and their interrelationships in the patient's visit history can be used to construct a comprehensive patient representation. (2) Patients with similar disease characteristics and their corresponding medication information can be used as a reference for predicting drug combinations. Results To address these limitations, we propose DAPSNet, which encodes multi-type medical codes into patient representations through code-level and visit-level attention mechanisms, while integrating drug information corresponding to similar patient states to improve the performance of drug recommendation. Specifically, our DAPSNet is enlightened by the decision-making process of human doctors. Given a patient, DAPSNet first learns the importance of patient history records between diagnosis, procedure, and drug in different visits, then retrieves the drug information corresponding to similar patient disease states for assisting drug combination prediction. Moreover, in the training stage, we introduce a novel information constraint loss function based on the information bottleneck principle to constrain the learned representation and enhance the robustness of DAPSNet. We evaluate the proposed DAPSNet on the public MIMIC-III dataset, our model achieves relative improvements of 1.33%, 1.20%, and 2.03% in Jaccard, F1, and PR-AUC scores, respectively, compared to state-of-the-art methods. Availability The source code is available at the github repository: https://github.com/andylun96/DAPSNet.
Transition from conventional to digital pathology requires a new category of biomedical informatic infrastructure which could facilitate delicate pathological routine. Pathological diagnoses are sensitive to many external factors and is known to be subjective. Only systems that can meet strict requirements in pathology would be able to run along pathological routines and eventually digitized the study area, and the developed platform should comply with existing pathological routines and international standards. Currently, there are a number of available software tools which can perform histopathological tasks including virtual slide viewing, annotating, and basic image analysis, however, none of them can serve as a digital platform for pathology. Here we describe OpenHI2, an enhanced version Open Histopathological Image platform which is capable of supporting all basic pathological tasks and file formats; ready to be deployed in medical institutions on a standard server environment or cloud computing infrastructure. In this paper, we also describe the development decisions for the platform and propose solutions to overcome technical challenges so that OpenHI2 could be used as a platform for histopathological images. Further addition can be made to the platform since each component is modularized and fully documented. OpenHI2 is free, open-source, and available at https://gitlab.com/BioAI/OpenHI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.