A cascade amplification release nanoparticle (CARN) is constructed by the coencapsulation of β-lapachone and a reactive-oxygen-species (ROS)-responsive doxorubicin (DOX) prodrug, BDOX, in polymeric nanoparticles. Releasing β-lapachone first from the CARNs selectively increases the ROS level in cancer cells via NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, which induces the cascade amplification release of DOX and overcomes multidrug resistance (MDR) in cancer cells, producing a remarkably improved therapeutic efficacy against MDR tumors with minimal side effects.
Nanomaterials having enzyme‐like activities are recognized as potentially important self‐therapeutic nanomedicines. Herein, a peroxidase‐like artificial enzyme is developed based on novel biodegradable boron oxynitride (BON) nanostructures for highly efficient and multi‐mode breast cancer therapies. The BON nanozyme catalytically generates cytotoxic hydroxyl radicals, which induce apoptosis of 4T1 cancer cells and significantly reduce the cell viability by 82% in 48 h. In vivo experiment reveals a high potency of the BON nanozyme for breast tumor growth inhibitions by 97% after 14‐day treatment compared with the control, which are 10 times or 1.3 times more effective than the inert or B‐releasing boron nitride (BN) nanospheres, respectively. This work highlights the BON nanozyme and its functional integrations within the BN nanomedicine platform for high‐potency breast cancer therapies.
Fuel cell vehicles powered by hydrogen are particularly attractive and competitive among rapidly developing new energy‐driven automobiles. One critical problem for this type of vehicles is the high cost for hydrogen storage due to the lack of efficient and low‐pressure hydrogen storage technologies. In the frame of development of hydrogen physisorption‐relied materials, attention has mostly been paid to the textural designs of porous materials, including specific surface area, pore volume, and pore size. However, based on the hydrogen physisorption mechanism, hydrogen adsorption energy on a material surface is another key factor with regard to hydrogen uptake capacity. Herein, solid experimental evidences are provided and it is also proven that the chemical states of porous boron nitride (BN) materials remarkably affect their hydrogen adsorption performances. The developed carbon and oxygen co‐doped BN microsponges exhibit the hydrogen uptake capacity per specific surface area of 2.5–4.7 times larger than those of undoped BN structures. These results show the importance of chemical state modulations on the future designs of high‐performance hydrogen adsorbents based on physisorption approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.