Lattice constants such as unit cell edge lengths and plane angles are important parameters of the periodic structures of crystal materials. Predicting crystal lattice constants has wide applications in crystal structure prediction and materials property prediction. Previous work has used machine learning models such as neural networks and support vector machines combined with composition features for lattice constant prediction and has achieved a maximum performance for cubic structures with an average coefficient of determination ( R 2 ) of 0.82. Other models tailored for special materials family of a fixed form such as ABX 3 perovskites can achieve much higher performance due to the homogeneity of the structures. However, these models trained with small data sets are usually not applicable to generic lattice parameter prediction of materials with diverse compositions. Herein, we report MLatticeABC, a random forest machine learning model with a new descriptor set for lattice unit cell edge length ( a , b , c ) prediction which achieves an R 2 score of 0.973 for lattice parameter a of cubic crystals with an average R 2 score of 0.80 for a prediction of all crystal systems. The R 2 scores are between 0.498 and 0.757 over lattice b and c prediction performance of the model, which could be used by just inputting the molecular formula of the crystal material to get the lattice constants. Our results also show significant performance improvement for lattice angle predictions. Source code and trained models can be freely accessed at .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.