Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future.
A stirring hydrothermal process that enables the formation of elongated bending TiO2 -based nanotubes is presented. By making use of its bending nature, the elongated TiO2 (B) nanotubular crosslinked-network anode electrode can cycle over 10 000 times in half cells while retaining a relatively high capacity (114 mA h g(-1)) at an ultra-high rate of 25 C (8.4 A g(-1)).
High‐quality InP/ZnS core–shell nanocrystals with luminescence tunable over the entire visible spectrum have been achieved by a facile one‐pot solvothermal method. These nanocrystals exhibit high quantum yields (above 60%), wide emission spectrum tunability and excellent photostability. The FWHM can be as narrow as 38 nm, which is close to that of CdSe nanocrystals. Also, making use of these nanocrystals, we further demonstrated a cadmium‐free white QD‐LED with a high color rendering index of 91. The high‐performance of the resulting InP/ZnS NCs coupled with their low intrinsic toxicity may further promote industrial applications of these NC emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.