Background Treatment for glaucoma has traditionally been limited to reducing intraocular pressure (IOP). Inhibiting oxidative stress in the trabecular meshwork (TM) is regarded as a new treatment for glaucoma; however, the effects do not meet expectations. Exploring the mechanism by which oxidative stress and antioxidant stress occur in TM cells will offer clues to aid the development of new treatments. Methods and results In our study, we cultured TM cells and used H2O2 and SOD to induce and inhibit oxidative stress, respectively. Label-free LC–MS/MS quantitative proteomic analysis was conducted to analyze the differentially expressed proteins and relevant signaling pathways. A total of 24 upregulated proteins and 18 downregulated proteins were identified under oxidative stress. PTGS2, TGFβr2 and ICAM-1 are the key proteins. The PTGS2/NF-ĸb pathway, TGF-β/Smad signaling pathway and AGE-RAGE signaling pathway in diabetic complications may be the major signaling pathways under conditions of ROS-induced damage in TM cells. Seventy-eight proteins were upregulated and 73 proteins were downregulated under antioxidant stress in TM cells. The key protein was ICAM-1, which participates in the African trypanosomiasis pathway, one of the most important pathways under antioxidant stress. Combining the results of the Venn diagram with protein–protein interactions (PPIs), ICAM-1 was identified as the major protein. Cell Counting Kit-8 (CCK-8) and western blotting (WB) were used to reveal that suppressing the expression of ICAM-1 would improve the survival of TM cells. Conclusions Key proteins and signaling pathways play important roles in the mechanisms of oxidative stress and antioxidant strategies in TM cells. ICAM-1 knockdown can suppress the apoptosis of TM cells induced by H2O2, which may reveal new therapeutic targets and biomarkers for glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.