Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, the applicability and efficiency of this method in large animal models, such as the goat, have not been extensively studied. Here, by co-injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes (MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% respectively, and 10% for double gene modifications. The on- and off-target mutations of the target genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were carefully analyzed. The results showed that simultaneous editing of several sites was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust and efficient gene engineering tool in farm animals, and therefore will be critically important and applicable for breeding.
Since the early days of thermography in the 1950s, image processing techniques, sensitivity of thermal sensors and spatial resolution have progressed greatly, holding out fresh promise for infrared (IR) imaging techniques. Applications in civil, industrial and healthcare fields are thus reaching a high level of technical performance. The relationship between body temperature and disease was documented since 400 bc. In many diseases there are variations in blood flow, and these in turn affect the skin temperature. IR imaging offers a useful and non-invasive approach to the diagnosis and treatment (as therapeutic aids) of many disorders, in particular in the areas of rheumatology, dermatology, orthopaedics and circulatory abnormalities. This paper reviews many usages (and hence the limitations) of thermography in biomedical fields.
To elucidate the efficacy of different soy protein sources on piglet's performance, a total of 280 weaned piglets (Duroc×Yorkshire×Landrace, 23±3 d of age, 5.86±0.45 kg initial BW) were allotted to 5 treatment diets comprising soybean meal (SBM), soy protein concentrate (SPC), Hamlet protein (HP300), fungal (Aspergillus oryzae) fermented soy protein (FSP-A), and fungal plus bacterial (A. oryzae+Bacillus subtilis) fermented soy protein (FSP-B), respectively. Experimental diets for feeding trial were formulated to contain each soy protein sources at 8% level to corn-whey powder basal diet. There were 14 pigs per pen and 4 pens per treatment. Experimental diets were fed from 0 to 14 d after weaning and then a common commercial diet was fed from 15 to 35 d. Also for ileal digestibility studies, 18 pigs were assigned to 6 dietary treatments as N-free, SBM, SPC, HP300, FSP-A and FSP-B with Tcanulation at distal ileum for 6 days. At 14 th d of experimental feeding, the ADG was significantly higher (p<0.05) in SPC fed diet as compared with others. Similar trend was noticed during the 15-35 d and overall study (0-35 d). All the processed soy protein sources tested in this experiment improved (p<0.05) growth than SBM during overall study. The nutrient digestibility of GE, DM, CP and Ca showed lower (p<0.05) values in SBM and FSP-A fed groups than SPC and FSP-B treatments. The apparent ileal digestibility of TEAA, non-TEAA and TAA showed lower (p<0.05) in SBM treatments compared with other soy protein sources. The true ileal digestibility of TEAA, non-TEAA and TAA were lower (p<0.05) in SBM fed group than SPC and HP300 treatments, and lower than FSP treatments though they didn't achieve significant difference (p>0.05). Villous height and crypt depth was not affected by dietary treatments. In conclusion, the growth and digestibility of nutrients in weaned pigs fed SPC was superior to others. Also FSP-A and FSP-B showed improved performance than those fed SBM.
Four experiments were conducted to determine the effects of dietary supplementation of corn distillers dried grain with solubles (DDGS) diets with mannanase on performance, apparent total tract digestibility (ATTD) of energy and nutrients, blood metabolites, and carcass characteristics of grower-finisher pigs. In Exp. 1, 96 grower pigs (initial BW, 57.6 kg), 6 pigs per pen and 4 pens per treatment, were fed corn-soybean meal-based diets containing 10% DDGS and 0, 200, 400, or 600 units (U) of mannanase/kg. The ADG and blood glucose increased (linear, P < 0.05) with increasing concentrations of dietary mannanase. Pigs fed diets containing increasing levels of mannanase had improved ATTD of DM and CP (quadratic, P < 0.05). In Exp. 2, 64 finisher pigs (initial BW, 92.7 kg) were allotted to 4 treatment groups with 4 pigs per pen and 4 pens per treatment. Pigs were fed corn-soybean meal-based diets containing 15% DDGS and 0, 200, 400, or 600 U of mannanase/kg. Linear increases (P < 0.05) in ADG, blood glucose, and ATTD of DM, GE, and CP were observed with increasing levels of dietary mannanase supplementation. In Exp. 3, 208 grower pigs (initial BW, 60.5 kg) were allotted to 4 treatment groups with 13 pigs per pen and 4 pens per treatment. Pigs were fed diets containing 0 or 10% DDGS and 0 or 400 U of mannanase/kg in a 2 x 2 factorial arrangement. An increase (P < 0.05) in ADG and blood glucose for pigs fed diets containing mannanase was observed. The ATTD of DM and CP (P < 0.05) was decreased with the inclusion of DDGS, whereas pigs fed the mannanase-supplemented diets had an increased (P < 0.05) ATTD of CP. In Exp. 4, 208 finisher pigs (initial BW, 86.5 kg), with 13 pigs per pen and 4 pens per treatment, were fed diets containing 0 or 15% DDGS and 0 or 400 U of mannanase/kg in a 2 x 2 factorial arrangement. The ADG and blood glucose increased (P < 0.05) when mannanase was included in the diets. The ATTD of DM (P < 0.05), GE (P < 0.10), and CP (P < 0.05) increased by the supplementation with mannanase in the diets of finisher pigs. The carcass characteristics and meat quality were not affected by the DDGS or mannanase inclusion. These results indicated that including 10 and 15% DDGS in conventional swine grower and finisher diets had no detrimental effects on growth performance or carcass characteristics. In addition, supplementation with 400 U of mannanase/kg to diets containing 10 and 15% DDGS fed to grower and finisher pigs may improve growth performance and the ATTD of CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.