Over the past decade, lncRNAs have been widely reported in human malignant tumors, including papillary thyroid carcinoma. LncRNA SNHG15 has been validated to be a tumor facilitator in several types of malignancies. The present study focused on the biological role of SNHG15 in papillary thyroid carcinoma. Based on the result of qPCR analysis, we identified the strong expression of SNHG15 in human papillary thyroid carcinoma tissues and cell lines. Moreover, Kaplan–Meier method was utilized to analyze the internal relevance between SNHG15 expression and overall survival rate of patients with papillary thyroid carcinoma. Loss-of-function assays were designed and conducted to determine the inhibitory effects of silenced SNHG15 on the cell growth and migration in papillary thyroid carcinoma. The mechanical investigation indicated that SNHG15 upregulated YAP1 by sponging miR-200a-3p. Moreover, results of gain-of-function assays validated the anti-oncogenic function of miR-200a-3p in papillary thyroid carcinoma. Finally, results of rescue assays validated the function of SNHG15-miR-200a-3p-YAP1 axis in papillary thyroid carcinoma. YAP1 is known as an oncogene and a core factor of Hippo pathway. Here, we demonstrated that SNHG15 inactivated Hippo signaling pathway in papillary thyroid carcinoma. In summary, our findings demonstrated that SNHG15 serves as a competitively endogenous RNA (ceRNA) to regulate YAP1-Hippo signaling pathway by sponging miR-200a-3p in papillary thyroid carcinoma.
It is known that a high-cholesterol diet induces oxidative stress, inflammatory response, and beta-amyloid (Abeta) accumulation in mouse brain, resulting in neurodegenerative changes. Quercetin, a naturally occurring flavonoid, has been reported to possess numerous biological activities beneficial to health. Our previous studies have demonstrated that quercetin protects mouse brain against D-galactose-induced oxidative damage. Against this background, we evaluated the effect of quercetin on high-cholesterol-induced neurotoxicity in old mice and explored its potential mechanism. Our results showed that oral administration of quercetin significantly improved the behavioural performance of high-cholesterol-fed old mice in both a step-through test and the Morris water maze task. This is at least in part caused by decreasing ROS and protein carbonyl levels and restoring Cu--Zn superoxide dismutase (Cu, Zn-SOD) activity. Furthermore, quercetin also significantly activated the AMP-activated protein kinase (AMPK) via down-regulation of protein phosphatase 2C (PP2C), which reduced the integral optical density (IOD) of activated microglia cells and CD11b expression, down-regulated iNOS and cyclooxygenase-2 (COX-2) expression, and decreased IL-1beta, IL-6, and TNF-alpha expression in the brains of high-cholesterol-fed old mice through the suppression of NF-kappaB p65 nuclear translocation. Moreover, AMPK activation significantly increased 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acetyl-CoA carboxylase (ACC) phosphorylation and reduced fatty acid synthase (FAS) expression in the brains of high-cholesterol-fed old mice, which reduced cholesterol levels, down-regulated cholesterol 24-hydroxylase (CYP46A1) and beta-amyloid converting enzyme 1 (BACE1) expression, decreased eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation, and lowered Abeta deposits. However, the neuroprotective effect of quercetin was weakened by intraperitoneal injection of compound C, an AMPK inhibitor. These results suggest that AMPK activated by quercetin may be a potential target to enhance the resistance of neurons to age-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.