Polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA) blend films were prepared using biaxial stretching. The effects of PMMA content and stretching ratio on the crystallinity and β phase fraction of PVDF in blend films were investigated. The distributions of crystallinity and β phase fraction on variable locations were also studied. The results of FTIR and XRD showed that β phase appeared in PVDF/PMMA blends after extrusion and casting procedures. Although β phase fraction decreased after preheating, there was still an increasing trend during following biaxial stretching. More importantly, the increase in PMMA content improved β phase fraction, and the highest β phase fraction of 93% was achieved at PMMA content of 30 wt% and stretching ratio of 2×2. Besides, the reduction in PMMA content and the increase in stretching ratio improved the crystallinity of PVDF. The mechanical properties of the stretched films were significantly improved by increasing the stretching ratio as well. The uniform stress distribution on different regions of biaxial stretching films contributed to the uniform distribution of β phase fraction and crystallinity of PVDF with the aid of simulation. This work confirmed that biaxial stretching can be a candidate method to prepare PVDF/PMMA blend films with uniform distributions of comparable β phase and crystallinity of PVDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.