WebGestalt is a popular tool for the interpretation of gene lists derived from large scale -omics studies. In the 2019 update, WebGestalt supports 12 organisms, 342 gene identifiers and 155 175 functional categories, as well as user-uploaded functional databases. To address the growing and unique need for phosphoproteomics data interpretation, we have implemented phosphosite set analysis to identify important kinases from phosphoproteomics data. We have completely redesigned result visualizations and user interfaces to improve user-friendliness and to provide multiple types of interactive and publication-ready figures. To facilitate comprehension of the enrichment results, we have implemented two methods to reduce redundancy between enriched gene sets. We introduced a web API for other applications to get data programmatically from the WebGestalt server or pass data to WebGestalt for analysis. We also wrapped the core computation into an R package called WebGestaltR for users to perform analysis locally or in third party workflows. WebGestalt can be freely accessed at http://www.webgestalt.org.
Highlights d Comprehensive LUAD proteogenomics exposes multi-omic clusters and immune subtypes d Phosphoproteomics identifies candidate ALK-fusion diagnostic markers and targets d Candidate drug targets: PTPN11 (EGFR), SOS1 (KRAS), neutrophil degranulation (STK11) d Phospho and acetyl modifications denote tumor-specific markers and druggable proteins
Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.
SUMMARY The WAVE regulatory complex (WRC) controls actin cytoskeletal dynamics throughout the cell by stimulating the actin nucleating activity of the Arp2/3 complex at distinct membrane sites. However, the factors that recruit the WRC to specific locations remain poorly understood. Here we have identified a large family of potential WRC ligands, consisting of ~120 diverse membrane proteins including protocadherins, ROBOs, netrin receptors, Neuroligins, GPCRs and channels. Structural, biochemical and cellular studies reveal that a novel sequence motif that defines these ligands binds to a highly conserved interaction surface of the WRC formed by the Sra and Abi subunits. Mutating this binding surface in flies resulted in defects in actin cytoskeletal organization and egg morphology during oogenesis, leading to female sterility. Our findings directly link diverse membrane proteins to the WRC and actin cytoskeleton, and have broad physiological and pathological ramifications in metazoans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.